WRF Hub-Height Wind Forecast Sensitivity to PBL Scheme, Grid Length, and Initial Condition Choice in Complex Terrain

David Siuta University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by David Siuta in
Current site
Google Scholar
PubMed
Close
,
Gregory West University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Gregory West in
Current site
Google Scholar
PubMed
Close
, and
Roland Stull University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Roland Stull in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the sensitivity of wind turbine hub-height wind speed forecasts to the planetary boundary layer (PBL) scheme, grid length, and initial condition selection in the Weather Research and Forecasting (WRF) Model over complex terrain. Eight PBL schemes available for the WRF-ARW dynamical core were tested with initial conditions sources from the North American Mesoscale (NAM) model and Global Forecast System (GFS) to produce short-term wind speed forecasts. The largest improvements in forecast accuracy primarily depended on the grid length or PBL scheme choice, although the most important factor varied by location, season, time of day, and bias-correction application. Aggregated over all locations, the Asymmetric Convective Model, version 2 (ACM2) PBL scheme provided the best forecast accuracy, particularly for the 12-km grid length. Other PBL schemes and grid lengths, however, did perform better than the ACM2 scheme for individual seasons or locations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author e-mail: David Siuta, dsiuta@eos.ubc.ca

Abstract

This study evaluates the sensitivity of wind turbine hub-height wind speed forecasts to the planetary boundary layer (PBL) scheme, grid length, and initial condition selection in the Weather Research and Forecasting (WRF) Model over complex terrain. Eight PBL schemes available for the WRF-ARW dynamical core were tested with initial conditions sources from the North American Mesoscale (NAM) model and Global Forecast System (GFS) to produce short-term wind speed forecasts. The largest improvements in forecast accuracy primarily depended on the grid length or PBL scheme choice, although the most important factor varied by location, season, time of day, and bias-correction application. Aggregated over all locations, the Asymmetric Convective Model, version 2 (ACM2) PBL scheme provided the best forecast accuracy, particularly for the 12-km grid length. Other PBL schemes and grid lengths, however, did perform better than the ACM2 scheme for individual seasons or locations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author e-mail: David Siuta, dsiuta@eos.ubc.ca
Save
  • Ahlstrom, M., and Coauthors, 2013: Knowledge is power: Efficiently integrating wind energy and wind forecasts. IEEE Power Energy Mag., 11 (6), 4552, doi:10.1109/MPE.2013.2277999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 2001: Introduction to Micrometeorology. 2nd ed. Academic Press, 420 pp.

  • Bourdin, D. R., T. N. Nipen, and R. B. Stull, 2014: Reliable probabilistic forecasts from an ensemble reservoir inflow forecasting system. Water Resour. Res., 50, 31083130, doi:10.1002/2014WR015462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canadian Wind Energy Association, 2008: Wind Vision 2025: Powering Canada’s future. CanWEA Tech. Rep., 24 pp. [Available online at http://canwea.ca/pdf/windvision/Windvision_summary_e.pdf.]

  • Cheng, W. Y., Y. Liu, Y. Liu, Y. Zhang, W. P. Mahoney, and T. T. Warner, 2013: The impact of model physics on numerical wind forecasts. Renewable Energy, 55, 347356, doi:10.1016/j.renene.2012.12.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., B. J. Snyder, and S. F. J. De Wekker, Eds., 2013: Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. Springer, 750 pp.

    • Crossref
    • Export Citation
  • Clement, M. A., 2012: A methodology to assess the value of integrated hydropower and wind generation. M.S. thesis, Dept. of Civil, Environmental, and Architectural Engineering, University of Colorado, 183 pp. [Available online at https://cadswes.colorado.edu/sites/default/files/PDF/Theses-PhD/Clement_Thesis2012.pdf.]

  • Corbus, D., D. Lew, G. Jordan, W. Winters, F. Van Hull, J. Manobianco, and B. Zavadil, 2009: Up with wind. IEEE Power Energy Mag., 7 (6), 3646, doi:10.1109/MPE.2009.934260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMeo, E., G. Jordan, C. Kalich, J. King, M. Milligan, C. Murley, B. Oakleaf, and M. Schuerger, 2007: Accommodating wind’s natural behavior. IEEE Power Energy Mag., 5 (6), 5967, doi:10.1109/MPE.2007.906562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Department of Energy, 2008: 20% wind energy by 2030: Increasing wind energy’s contribution to U.S. electricity supply. Dept. of Energy Rep. DOE/GO-102008-2567, 228 pp. [Available online at http://www.nrel.gov/docs/fy08osti/41869.pdf.]

  • Deppe, A. J., W. A. Gallus Jr., and E. S. Takle, 2013: A WRF ensemble for improved wind speed forecasts at turbine height. Wea. Forecasting, 28, 212228, doi:10.1175/WAF-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. N. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, doi:10.1002/we.1555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, J. S., M. Chatelain, M. Morrissey, and S. Stadler, 2012: Projected future wind speed and wind power density trends over the western US high plains. Atmos. Climate Sci., 2, 3240, doi:10.4236/acs.2012.21005.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129, 357377, doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., C. L. Vincent, A. Peña, J. Lange, and C. B. Hasager, 2015: Wind climate estimation using WRF model output: Method and model sensitivities over the sea. Int. J. Climatol., 35, 34223439, doi:10.1002/joc.4217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 41010 505, doi:10.1002/jgrd.50823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. C. B. Field et al., Eds., Cambridge University Press, 1132 pp. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-PartA_FINAL.pdf.]

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, M., J. Wilczak, M. Ahlstrom, J. Sharp, A. Stern, J. C. Smith, and S. Calvert, 2011: Forecasting the wind to reach significant penetration levels of wind energy. Bull. Amer. Meteor. Soc., 92, 11591171, doi:10.1175/2011BAMS3033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martner, B. E., and J. D. Marwitz, 1982: Wind characteristics in southern Wyoming. J. Appl. Meteor., 21, 18151827, doi:10.1175/1520-0450(1982)021<1815:WCISW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollor, D., and R. Stull, 2008: Hydrometeorological short-range ensemble forecasts in complex terrain. Part II: Economic evaluation. Wea. Forecasting, 23, 557574, doi:10.1175/2007WAF2007064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteiro, C., R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann, 2009: Wind power forecasting: State-of-the-art 2009. Argonne National Laboratory Tech. Rep. ANL/DIS-10-1, 198 pp., doi:10.2172/968212.

    • Crossref
    • Export Citation
  • Murphy, A. H., and R. L. Winkler, 1987: A general framework for forecast verification. Mon. Wea. Rev., 115, 13301338, doi:10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, E. W., and J. P. Hennessey, 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteor., 17, 390394, doi:10.1175/1520-0450(1978)017<0390:OTUOPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, E., and R. Stull, 1998: Wind and temperature profiles in the radix layer: The bottom fifth of the convective boundary layer. J. Appl. Meteor., 37, 545558, doi:10.1175/1520-0450(1998)037<0545:WATPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, E., and R. Stull, 2001: Similarity equations for wind and temperature profiles in the radix layer, at the bottom of the convective boundary layer. J. Atmos. Sci., 58, 14461464, doi:10.1175/1520-0469(2001)058<1446:SEFWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 14271440, doi:10.1175/BAMS-D-13-00245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parameterizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siuta, D., 2013: An analysis of the weather research and forecasting model for wind energy applications in Wyoming. M.S. thesis, Dept. of Atmospheric Science, University of Wyoming, 116 pp.

  • Siuta, D., G. West, T. Nipen, and R. Stull, 2017: Calibrated probabilistic hub-height wind forecasts in complex terrain. Wea. Forecasting, doi:10.1175/WAF-D-16-0137.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Stull, R. B., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. Bound.-Layer Meteor., 62, 2196, doi:10.1007/BF00705546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and I. Staroselsky, 2005: A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids, 17, 085107, doi:10.1063/1.2009010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 526 pp.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Yang, B., and Coauthors, 2016: Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the Weather Research and Forecasting model. Bound.-Layer Meteor., 162, 117142, doi:10.1007/s10546-016-0185-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. K. Berg, M. Pekour, J. D. Fast, R. K. Newsom, M. Stoelinga, and C. Finley, 2013: Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific Northwest site with complex terrain. J. Appl. Meteor. Climatol., 52, 17531763, doi:10.1175/JAMC-D-12-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7383, doi:10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2418 1031 65
PDF Downloads 1215 156 10