A High-Resolution Aerial Survey and Radar Analysis of Quasi-Linear Convective System Surface Vortex Damage Paths from 31 August 2014

Kevin D. Skow NOAA/NWS/Des Moines Weather Forecast Office, Johnston, Iowa

Search for other papers by Kevin D. Skow in
Current site
Google Scholar
PubMed
Close
and
Craig Cogil NOAA/NWS/Des Moines Weather Forecast Office, Johnston, Iowa

Search for other papers by Craig Cogil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On the evening of 31 August 2014, a powerful quasi-linear convective system (QLCS) impacted much of Iowa. In the weeks following the event, the entire path of the QLCS was imaged at ~1-m resolution using aerial photography through the National Agriculture Imagery Program. The predominantly flat, mature agricultural land cover of central Iowa provided an excellent medium on which to document wind phenomena of varying scales. The high-resolution aerial data, in combination with recent spatial, temporal, and polarimetric upgrades to the Weather Surveillance Radar-1988 Doppler (WSR-88D) network, offer an extraordinary glimpse into the quantity, evolution, and scale of surface vortices generated throughout the entire lifespan of this QLCS. One hundred eleven damage tracks associated with these vortices were cataloged along the storm’s 350-km path, ranging in length from 130 m to nearly 18 km. This study classified 35 of these circulations as tornadoes using a series of tests that weighed track characteristics and radar data. Unusual features, such as a likely tornado merger and multiple instances of tornadoes occluding behind the leading edge of the QLCS surface cold pool, are examined. Possible genesis mechanisms and National Weather Service operational implications are also discussed. A new, behavioral-based approach for identifying a tornadic debris signature (TDS) is presented that may be better suited for QLCS tornadoes. Twelve TDSs were cataloged on 31 August 2014 using this methodology at ranges up to 90 km from the Des Moines, Iowa, WSR-88D.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kevin Skow, kevin.skow@noaa.gov

Abstract

On the evening of 31 August 2014, a powerful quasi-linear convective system (QLCS) impacted much of Iowa. In the weeks following the event, the entire path of the QLCS was imaged at ~1-m resolution using aerial photography through the National Agriculture Imagery Program. The predominantly flat, mature agricultural land cover of central Iowa provided an excellent medium on which to document wind phenomena of varying scales. The high-resolution aerial data, in combination with recent spatial, temporal, and polarimetric upgrades to the Weather Surveillance Radar-1988 Doppler (WSR-88D) network, offer an extraordinary glimpse into the quantity, evolution, and scale of surface vortices generated throughout the entire lifespan of this QLCS. One hundred eleven damage tracks associated with these vortices were cataloged along the storm’s 350-km path, ranging in length from 130 m to nearly 18 km. This study classified 35 of these circulations as tornadoes using a series of tests that weighed track characteristics and radar data. Unusual features, such as a likely tornado merger and multiple instances of tornadoes occluding behind the leading edge of the QLCS surface cold pool, are examined. Possible genesis mechanisms and National Weather Service operational implications are also discussed. A new, behavioral-based approach for identifying a tornadic debris signature (TDS) is presented that may be better suited for QLCS tornadoes. Twelve TDSs were cataloged on 31 August 2014 using this methodology at ranges up to 90 km from the Des Moines, Iowa, WSR-88D.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kevin Skow, kevin.skow@noaa.gov
Save
  • AMS, 2013: Tornado. Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Tornado.]

  • Atkins, N. T., and M. St. Laurent, 2009a: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513, doi:10.1175/2008MWR2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009b: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 15141532, doi:10.1175/2008MWR2650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, R. J. Trapp, and G. Schmocker, 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296, doi:10.1175/MWR2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D., M. R. Kumjian, R. D. Palmer, P. L. Heinselman, and A. V. Ryzhkov, 2013: Tornado damage estimation using polarimetric radar. Wea. Forecasting, 28, 139158, doi:10.1175/WAF-D-11-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms/19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., J117–J120. [Available online at https://ams.confex.com/ams/pdfpapers/47482.pdf.]

  • Brotzge, J. A., S. E. Nelson, R. L. Thompson, and B. T. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, doi:10.1175/WAF-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2012: The tornadic vortex signature: An update. Wea. Forecasting, 27, 525530, doi:10.1175/WAF-D-11-00111.1.

  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, doi:10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, doi:10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camp, J. P., K. Stellman, and J. Settelmaier, 2010: Utilizing mobile devices for enhanced storm damage surveys. 26th Conf. on Integrated Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 5B.4. [Available online at ams.confex.com/ams/90annual/webprogram/Paper161540.html.]

  • Camp, J. P., L. P. Rothfusz, A. Anderson, D. Speheger, K. L. Ortega, and B. R. Smith, 2014: Assessing the Moore, Oklahoma (2013) tornado using the National Weather Service Damage Assessment Toolkit. Special Symp. on Severe Local Storms: The Current State of the Science and Understanding Impacts, Atlanta, GA, Amer. Meteor. Soc., 830. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper233734.html.]

  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551766, doi:10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., C. A. Doswell III, D. W. Burgess, and J. F. Weaver, 1994: Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990. Bull. Amer. Meteor. Soc., 75, 10071017, doi:10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorms: A Social and Technological Documentary, E. Kessler, Ed., Vol. II, University of Oklahoma Press, 197–236.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, doi:10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entremont, C., and J. D. Lamb, 2015: The relationship between tornadic debris signature height and tornado intensity. Third Symp. on Building a Weather-Ready Nation: Enhancing Our Nation’s Readiness, Responsiveness, and Resilience to High Impact Weather Events, Phoenix, AZ, Amer. Meteor. Soc., 452. [Available online at https://ams.confex.com/ams/95Annual/webprogram/Paper268874.html.]

  • Forbes, G. S., and R. M. Wakimoto, 1983: A concentrated outbreak of tornadoes, downbursts and microbursts, and implications regarding vortex classification. Mon. Wea. Rev., 111, 220235, doi:10.1175/1520-0493(1983)111<0220:ACOOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, doi:10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1974: Jumbo tornado outbreak of 3 April 1974. Weatherwise, 27 (3), 116-126, doi:10.1080/00431672.1974.9931693.

  • Fujita, T. T., 1978: Manual of downburst identification for Project NIMROD. SMRP Research Paper 156, University of Chicago, 104 pp.

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and A. D. Pearson, 1973: Results of FPP classification of 1971 and 1972 tornadoes. Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 142–145.

  • Fujita, T. T., D. L. Bradbury, and C. F. Van Thullenar, 1970: Palm Sunday tornadoes of April 1, 1965. Mon. Wea. Rev., 98, 2969, doi:10.1175/1520-0493(1970)098<0029:PSTOA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, T. W., K. E. Darmofal, J. D. Kirkpatrick, V. L. Dewald, R. W. Przybylinski, G. K. Schmocker, and Y.-J. Lin, 1999: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and southern Indiana. Wea. Forecasting, 14, 976993, doi:10.1175/1520-0434(1999)014<0976:SRAMEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jedlovec, G. J., U. Nair, and S. L. Haines, 2006: Detection of storm damage tracks with EOS data. Wea. Forecasting, 21, 249267, doi:10.1175/WAF923.1.

  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus Jr., and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, doi:10.1175/2010MWR3201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., W. A. Gallus Jr., B. D. Lee, and C. A. Finley, 2013: Analysis of tornado-induced tree fall using aerial photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, tornadoes of 2011. J. Appl. Meteor. Climatol., 52, 10491068, doi:10.1175/JAMC-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, doi:10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1999: Operational uses of velocity spectrum width data. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 776–779.

  • Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, doi:10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39.

    • Crossref
    • Export Citation
  • McDonald, J. R., 2001: T. Theodore Fujita: His contribution to tornado knowledge through damage documentation and the Fujita scale. Bull. Amer. Meteor. Soc., 82, 6372, doi:10.1175/1520-0477(2001)000<0063:TTFHCT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meunier, P., S. Le Dizès, and T. Leweke, 2005: Physics of vortex merging. C. R. Phys., 6, 431450, doi:10.1016/j.crhy.2005.06.003.

  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, doi:10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., J. R. Bell, T. A. Cole, and J. E. Burks, 2014: Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak. J. Oper. Meteor., 2, 191208, doi:10.15191/nwajom.2014.0216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2016: Storm Events Database. NOAA/National Centers for Environmental Information. [Available online at https://www.ncdc.noaa.gov/stormevents/.]

  • NWS, 2011: Post-storm data acquisition. NWS Instruction 10-1604, 9 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01016004curr.pdf.]

  • NWS, 2015: Impact Based Warnings national program. [Available online at http://www.weather.gov/impacts/.]

  • NWS, 2016: Storm Data preparation. NWS Instruction 10-1605, 110 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01016005curr.pdf.]

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, doi:10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ROC, 2012: Description document: Supplemental Adaptive Intra-Volume Low-Level Scan (SAILS). NWS/Radar Operations Center, 5 pp. [Available online at http://www.roc.noaa.gov/wsr88d/PublicDocs/NewTechnology/Supplemental_Adaptive_Intra_Volume_Low_Level_Scan_Description_Document_Final.pdf.]

  • ROC, 2014: Multiple Elevation Scan Option for SAILS (MESO-SAILS). NWS/Radar Operations Center, 27 pp. [Available online at https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.]

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, doi:10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satellite Imaging Corporation, 2016: IKONOS satellite image of tornado damage in Oklahoma City. [Available online at http://www.satimagingcorp.com/gallery/ikonos/ikonos-tornadodamage-lg/.]

  • SBIR, 2015: NOAA FY 2016 SBIR solicitation. Small Business Innovation Research Program. [Available online at https://www.sbir.gov/node/831287.]

  • Schaumann, J. S., and R. W. Przybylinski, 2012: Operational application of 0-3 km bulk shear vectors in assessing quasi-linear convective system mesovortex and tornado potential. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 142. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper212008.html.]

  • Schenkman, A. D., and M. Xue, 2016: Bow-echo mesovortices: A review. Atmos. Res., 170, 113, doi:10.1016/j.atmosres.2015.11.003.

  • Schultz, C. J., and Coauthors, 2012: Dual-polarization tornadic debris signatures Part I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13 (9), 120137. [Available online at http://nwafiles.nwas.org/ej/pdf/2012-EJ9.pdf.]

    • Search Google Scholar
    • Export Citation
  • Schultz, L. A., K. Angle, T. Cole, K. Skow, J. Bell, A. L. Molthan, J. E. Burks, and K. M. McGrath, 2016: Applications of satellite imagery applications to assist in storm damage assessment. Fourth Symp. on Building a Weather-Ready Nation: Enhancing Our Nation’s Readiness, Responsiveness, and Resilience to High Impact Weather Events, New Orleans, LA, Amer. Meteor. Soc., 10.2A. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper286729.html.]

  • Skow, K., 2014: The art of storm surveying: Leveraging new datasets to document the 12 June 2013 tornadoes. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., JP12.170. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper254329.html.]

  • Skow, K., 2015: An assessment of tornadic debris signatures observed in central Iowa. 19th Annual Severe Storms and Doppler Radar Conf., Ankeny, IA, Central Iowa NWA, 7. [Available online at http://www.iowa-nwa.com/conference/files/nwa_abs2015.pdf.]

  • Skow, K., 2016: Verification of tornadogenesis in high shear low CAPE environments using the correlation coefficient plume identification technique. 20th Annual Severe Storms and Doppler Radar Conf., Ankeny, IA, Central Iowa NWA, 6. [Available online at http://iowa-nwa.com/conference/files/2016_NWA_Agenda.pdf.]

  • Smull, B. F., and R. A. Houze Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, doi:10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, J. T., C. R. Church, and B. J. Barnhart, 1980: An investigation of the surface pressure fields beneath simulated tornado cyclones. J. Atmos. Sci., 37, 10131026, doi:10.1175/1520-0469(1980)037<1013:AIOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPC, 2014: Storm reports from August 31, 2014. [Available online at http://www.spc.noaa.gov/climo/reports/140831_rpts.html.]

  • Spoden, P. J., R. A. Wolf, and L. R. Lemon, 2012: Operational uses of spectrum width. Electron. J. Severe Storms Meteor., 7 (2). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/86/70.]

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, doi:10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at http://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.]

  • Trainor, J. E., D. Nagele, B. Philips, and B. Scott, 2015: Tornadoes, social science, and the false alarm effect. Wea. Climate Soc., 7, 333352, doi:10.1175/WCAS-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, doi:10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639, doi:10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, doi:10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USDA, 2015: National Agriculture Imagery Program (NAIP) information sheet. U.S. Dept. of Agriculture, 2 pp. [Available online at http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2015.pdf.]

  • Van Den Broeke, M. S., 2015: Polarimetric tornadic debris signature variability and debris fallout signatures. J. Appl. Meteor. Climatol., 54, 23892405, doi:10.1175/JAMC-D-15-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, doi:10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Tassel, E. L., 1955: The North Platte Valley tornado outbreak of June 27, 1955. Mon. Wea. Rev., 83, 255264, doi:10.1175/1520-0493(1955)083<0255:TNPVTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1983: The West Bend, Wisconsin storm of 4 April 1981: A problem in operational meteorology. J. Appl. Meteor., 22, 181189, doi:10.1175/1520-0450(1983)022<0181:TWBWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 11131140, doi:10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, doi:10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WDTD, 2016: Analyzing tornadic scale signatures. Warning Division Training Division. [Available online at http://www.wdtb.noaa.gov/courses/rac/severe/tornadic-signatures/presentation.html.]

  • Weisman, M. L., 1990: The numerical simulation of bow echoes. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 428–433.

  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and sensitivity to environmental vertical wind shear. Mon. Wea. Rev., 131, 27792803, doi:10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, M., M. Dickens-Micozzi, and M. A. Magsig, 2002: Analysis of tornado damage tracks from the 3 May tornado outbreak using multispectral satellite imagery. Wea. Forecasting, 17, 382398, doi:10.1175/1520-0434(2002)017<0382:AOTDTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1518 545 122
PDF Downloads 905 234 30