Rapid Evolution of Cool Season, Low-CAPE Severe Thunderstorm Environments

Jessica R. King Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Jessica R. King in
Current site
Google Scholar
PubMed
Close
,
Matthew D. Parker Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Matthew D. Parker in
Current site
Google Scholar
PubMed
Close
,
Keith D. Sherburn Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Keith D. Sherburn in
Current site
Google Scholar
PubMed
Close
, and
Gary M. Lackmann Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Gary M. Lackmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Low-CAPE (i.e., CAPE ≤ 1000 J kg−1) severe thunderstorms are common in the greater southeastern United States (including the Tennessee and Ohio valleys). These events are often poorly forecasted, and the environments in which they occur may rapidly evolve. Real-data simulations of 11 low-CAPE severe events and 6 low-CAPE nonsevere events were performed at convection-allowing resolution. Some amount of surface-based destabilization occurred during all simulated events over the 3-h period prior to convection. Most simulated severe events experienced comparatively large destabilization relative to the nonsevere events as a result of surface warming, cooling aloft, and surface moistening. The release of potential instability by large-scale forcing for ascent likely influenced the cooling aloft in some cases. Surface warming was attributable primarily to warm advection and appeared to be an important discriminator between severe and nonsevere simulated events. Severe events were also found to have larger low-level wind shear than nonsevere events, particularly during nocturnal cases. Because of the rapid destabilization that occurred within 3 h in the simulated events, it is evident that 3–6-hourly model output may not be adequate for forecasting severe events in high-shear, low-CAPE environments. Monitoring of high-resolution model forecasts and surface observations may be necessary to identify a rapidly changing severe environment.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jessica King, jrking2@ncsu.edu

Abstract

Low-CAPE (i.e., CAPE ≤ 1000 J kg−1) severe thunderstorms are common in the greater southeastern United States (including the Tennessee and Ohio valleys). These events are often poorly forecasted, and the environments in which they occur may rapidly evolve. Real-data simulations of 11 low-CAPE severe events and 6 low-CAPE nonsevere events were performed at convection-allowing resolution. Some amount of surface-based destabilization occurred during all simulated events over the 3-h period prior to convection. Most simulated severe events experienced comparatively large destabilization relative to the nonsevere events as a result of surface warming, cooling aloft, and surface moistening. The release of potential instability by large-scale forcing for ascent likely influenced the cooling aloft in some cases. Surface warming was attributable primarily to warm advection and appeared to be an important discriminator between severe and nonsevere simulated events. Severe events were also found to have larger low-level wind shear than nonsevere events, particularly during nocturnal cases. Because of the rapid destabilization that occurred within 3 h in the simulated events, it is evident that 3–6-hourly model output may not be adequate for forecasting severe events in high-shear, low-CAPE environments. Monitoring of high-resolution model forecasts and surface observations may be necessary to identify a rapidly changing severe environment.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jessica King, jrking2@ncsu.edu
Save
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms/19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online at https://ams.confex.com/ams/pdfpapers/47482.pdf.]

  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. J. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2009: The southern England tornadoes of 30 December 2006: Case study of a tornadic storm in a low CAPE, high shear environment. J. Atmos. Res., 93, 5065, doi:10.1016/j.atmosres.2008.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2013: A provisional climatology of cool-season convective lines in the UK. J. Atmos. Res., 123, 180196, doi:10.1016/j.atmosres.2012.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, doi:10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., H. E. Brooks, S. J. Weiss, and S. F. Corfidi, 2007: Forecasting the maintenance of quasi-linear mesoscale convective systems. Wea. Forecasting, 22, 556570, doi:10.1175/WAF1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J. M., and M. D. Parker, 2014: Radar climatology of tornadic and nontornadic vortices in high-shear, low-CAPE environments in the mid-Atlantic and southeastern United States. Wea. Forecasting, 29, 828853, doi:10.1175/WAF-D-13-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dial, G. L., J. P. Racy, and R. L. Thompson, 2010: Short-term convective mode evolution along synoptic boundaries. Wea. Forecasting, 25, 14301446, doi:10.1175/2010WAF2222315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth Mesoscale Model Users’ Workshop, Boulder, CO, PSU–NCAR, 22–24.

  • Evans, M., 2010: An examination of low CAPE/high shear severe convective events in the Binghamton, New York county warning area. Natl. Wea. Dig., 34, 129144.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., and S. S. Parker, 2006: A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachian region. Wea. Forecasting, 21, 735751, doi:10.1175/WAF951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gold, D. A., and J. W. Nielson-Gammon, 2008: Potential vorticity diagnosis of the severe convective regime. Part III: The Hesston tornado outbreak. Mon. Wea. Rev., 136, 15931611, doi:10.1175/2007MWR2092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: Climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, doi:10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyer, J. L., and A. R. Dean, 2010: Tornadoes within weak CAPE environments across the continental United States. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 1.5. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175725.htm.]

  • Guyer, J. L., D. A. Imy, A. Kis, and K. Venable, 2006: Cool season significant (F2-F5) tornadoes in the Gulf Coast states. 23rd Conf. Severe Local Storms, St. Louis MO, Amer. Meteor. Soc., 4.2. [Available online at https://ams.confex.com/ams/23SLS/techprogram/paper_115320.htm.]

  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 11691178, doi:10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Jewett, B. F., and R. B. Wilhelmson, 2006: The role of forcing in cell morphology and evolution within midlatitude squall lines. Mon. Wea. Rev., 134, 37143734, doi:10.1175/MWR3164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, C., E. W. McCaul, and C. Cohen, 2011: Sensitivities of simulated convective storms to environmental CAPE. Mon. Wea. Rev., 139, 35143532, doi:10.1175/2011MWR3631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, doi:10.1175/2009WAF2222294.1.

  • Lackmann, G. M., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 5974, doi:10.1175/1520-0493(2002)130<0059:CFPVMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, J. D., and P. D. Moore, 2006: Observations of a non-supercell tornadic thunderstorm from Terminal Doppler Weather Radar. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P4.5. [Available online at https://ams.confex.com/ams/23SLS/techprogram/paper_115102.htm.]

  • Mahoney, K. M., and G. M. Lackmann, 2007: The effect of upstream convection on downstream precipitation. Wea. Forecasting, 22, 255277, doi:10.1175/WAF986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 1996: Simulation of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408429, doi:10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, doi:10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2002: Use of a mesoscale model to forecast severe weather associated with a cold front aloft. Wea. Forecasting, 17, 755773, doi:10.1175/1520-0434(2002)017<0755:UOAMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, R. S., and A. R. Dean, 2008: A comprehensive 5-year severe storm environment climatology for the continental United States. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141748.htm.]

  • Schneider, R. S., A. R. Dean, S. J. Weiss, and P. D. Bothwell, 2006: Analysis of estimated environments for 2004 and 2005 severe convective storm reports. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 3.5. [Available online at https://ams.confex.com/ams/23SLS/techprogram/paper_115246.htm.]

  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, M. R., and P. J. Roebber, 2010: The influence of upper-tropospheric potential vorticity on convective morphology. Mon. Wea. Rev., 138, 463474, doi:10.1175/2009MWR3091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, doi:10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, doi:10.1175/WAF-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, B. T., J. L. Guyer, and A. R. Dean, 2008: The climatology, convective mode, and mesoscale environment of cool season severe thunderstorms in the Ohio and Tennessee valleys, 1995-2006. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 13B.7. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141968.htm.]

  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., J. S. Grams, and J. A. Prentice, 2008: Synoptic environments and convective modes associated with significant tornadoes in the contiguous United States. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142210.htm.]

  • Tochimoto, E., and H. Niino, 2016: Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Mon. Wea. Rev., 144, 945969, doi:10.1175/MWR-D-15-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, doi:10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241, doi:10.1175/2008MWR2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1797 834 253
PDF Downloads 887 145 10