Distribution of Single-Banded Snowfall in Central U.S. Cyclones

Martin A. Baxter Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by Martin A. Baxter in
Current site
Google Scholar
PubMed
Close
and
Philip N. Schumacher NOAA/NWS Forecast Office, Sioux Falls, South Dakota

Search for other papers by Philip N. Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A climatology of single-banded snowfall in the central United States and the variability of processes at work in its formation are presented. Ninety-eight snowbands are identified in association with 66 cyclones over 5 yr spanning the winters from 2006/07 through 2010/11. An additional 38 cyclones featured nonbanded snowfall exceeding 4 in. (10.2 cm). Nearly twice as many bands were observed to the northeast of the surface low than to the northwest. Over each snowband’s life cycle, the median (mean) snowband lasted 4.0 (5.2) h, was 42 (45) km wide, 388 (428) km long, and had an aspect ratio of 10.2 (10.8). A common appearance exists for snowbands in different large-scale flow regimes and locations relative to the surface cyclone. The median snowband elongates during the first half of its life span, with its width remaining constant. During the second half of the median snowband’s life span, the length and width contract. Composite analysis of the synoptic and broad mesoscale environments that snowbands form in illustrates that the juxtaposition of the ingredients necessary for snowbands are similar no matter which quadrant of the surface low the band is located in, indicating that the synoptic-scale flow determines where these ingredients are organized with respect to the cyclone. The frequency of banded snowfall within each northern quadrant of the surface low, the typical snowband characteristics and their evolution, and the patterns that give rise to snowbands documented by this work can all prove useful to forecasters tasked with maintaining situational awareness in the presence of many solutions provided by ensemble numerical weather prediction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martin A. Baxter, marty.baxter@cmich.edu

Abstract

A climatology of single-banded snowfall in the central United States and the variability of processes at work in its formation are presented. Ninety-eight snowbands are identified in association with 66 cyclones over 5 yr spanning the winters from 2006/07 through 2010/11. An additional 38 cyclones featured nonbanded snowfall exceeding 4 in. (10.2 cm). Nearly twice as many bands were observed to the northeast of the surface low than to the northwest. Over each snowband’s life cycle, the median (mean) snowband lasted 4.0 (5.2) h, was 42 (45) km wide, 388 (428) km long, and had an aspect ratio of 10.2 (10.8). A common appearance exists for snowbands in different large-scale flow regimes and locations relative to the surface cyclone. The median snowband elongates during the first half of its life span, with its width remaining constant. During the second half of the median snowband’s life span, the length and width contract. Composite analysis of the synoptic and broad mesoscale environments that snowbands form in illustrates that the juxtaposition of the ingredients necessary for snowbands are similar no matter which quadrant of the surface low the band is located in, indicating that the synoptic-scale flow determines where these ingredients are organized with respect to the cyclone. The frequency of banded snowfall within each northern quadrant of the surface low, the typical snowband characteristics and their evolution, and the patterns that give rise to snowbands documented by this work can all prove useful to forecasters tasked with maintaining situational awareness in the presence of many solutions provided by ensemble numerical weather prediction.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Martin A. Baxter, marty.baxter@cmich.edu
Save
  • Adams, R. M., L. L. Houston, and R. F. Weiher, 2004: The value of snow and snow information services. NOAA National Operational Hydrological Remote Sensing Center Rep., 49 pp.

  • Banacos, P. C., 2003: Short-range prediction of banded precipitation associated with deformation and frontogenesis forcing. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., P1.7. [Available online at https://ams.confex.com/ams/pdfpapers/62368.pdf.]

  • Baxter, M. A., C. E. Graves, and J. T. Moore, 2005: A climatology of snow-to-liquid ratio for the contiguous United States. Wea. Forecasting, 20, 729744, doi:10.1175/WAF856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., P. N. Schumacher, and J. M. Boustead, 2011: The use of potential vorticity inversion to evaluate the effect of precipitation on downstream mesoscale processes. Quart. J. Roy. Meteor. Soc., 137, 179198, doi:10.1002/qj.730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. B., and C. E. Graves, 2009: The evolution of mesoscale ingredients that created an intense mesoscale snowband on 15 March 2004 in Des Moines, Iowa. Electron. J. Oper. Meteor., 10 (1). [Available online at http://nwafiles.nwas.org/ej/pdf/2009-EJ1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1985: Conceptual models of precipitation systems. Meteor. Mag., 114, 293318.

  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, doi:10.1017/S1350482797000613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, G. P., 1989: A composite analysis of winter season overrunning precipitation bands over the southern plains of the United States. J. Atmos. Sci., 46, 11191132, doi:10.1175/1520-0469(1989)046<1119:ACAOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, doi:10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, M., and M. L. Jurewicz Sr., 2009: Correlations between analyses and forecasts of banded heavy snow ingredients and observed snowfall. Wea. Forecasting, 24, 337350, doi:10.1175/2008WAF2007105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganetis, S. A., and B. A. Colle, 2015: The thermodynamic and microphysical evolution of an intense snowband during the northeast U.S. blizzard of 8–9 February 2013. Mon. Wea. Rev., 143, 41044125, doi:10.1175/MWR-D-14-00407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, E. M., T. J. Schuur, A. V. Ryzhkov, H. D. Reeves, and J. C. Picca, 2014: A polarimetric and microphysical investigation of the Northeast blizzard of 8–9 February 2013. Wea. Forecasting, 29, 12711294, doi:10.1175/WAF-D-14-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and M. Han, 2007: High-resolution observations of the trowal–warm-frontal region of two continental winter cyclones. Mon. Wea. Rev., 135, 16291646, doi:10.1175/MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, M., R. M. Rauber, M. K. Ramamurthy, B. F. Jewett, and J. A. Grim, 2007: Mesoscale dynamics of the trowal and warm-frontal regions of two continental winter cyclones. Mon. Wea. Rev., 135, 16471670, doi:10.1175/MWR3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, K. R. Biswas, and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868879, doi:10.1175/1520-0493(1976)104<0868:MRIEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jurewicz, M. L., Sr., and M. S. Evans, 2004: A comparison of two banded, heavy snowstorms with very different synoptic settings. Wea. Forecasting, 19, 10111028, doi:10.1175/WAF-823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquaher, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, doi:10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquaher, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, doi:10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1989: A technique for representing three-dimensional vertical circulations in baroclinic disturbances. Mon. Wea. Rev., 117, 24632494, doi:10.1175/1520-0493(1989)117<2463:ATFRTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loughe, A. F., C.-C. Lai, and D. Keyser, 1995: A technique for diagnosing three-dimensional ageostrophic circulations in baroclinic disturbances on limited-area domains. Mon. Wea. Rev., 123, 14761504, doi:10.1175/1520-0493(1995)123<1476:ATFDTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P. S., and A. E. Becker, 2009: A study of lightning flashes attending periods of banded snowfall. Geophys. Res. Lett., 36, L01809, doi:10.1029/2008GL036317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Market, P. S., C. E. Halcomb, and R. L. Ebert, 2002: A climatology of thundersnow events over the contiguous United States. Wea. Forecasting, 17, 12901295, doi:10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998a: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126, 303328, doi:10.1175/1520-0493(1998)126<0303:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998b: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348, doi:10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., J. D. Locatelli, and P. V. Hobbs, 1992: Organization and structure of clouds and precipitation on the mid-Atlantic coast of the United States. Part V: The role of an upper-level front in the generation of a rainband. J. Atmos. Sci., 49, 12931303, doi:10.1175/1520-0469(1992)049<1293:OASOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Moore, J. T., and T. E. Lambert, 1993: The use of equivalent potential vorticity to diagnose regions of conditional symmetric instability. Wea. Forecasting, 8, 301308, doi:10.1175/1520-0434(1993)008<0301:TUOEPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., C. E. Graves, S. Ng, and J. L. Smith, 2005: A process-oriented methodology toward understanding the organization of an extensive mesoscale snowband: A diagnostic case study of 4–5 December 1999. Wea. Forecasting, 20, 3550, doi:10.1175/WAF-829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2010: National Weather Service Central Region Supplement 02-2003: Applicable to NWSI 10-513. NWS CRS 02-2003, 14 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01005013c022003curr.pdf.]

  • Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., 2002: A climatological and composite study of cold season banded precipitation in the northeast United States. M.S. thesis, Dept. of Earth and Atmospheric Sciences, University at Albany, State University of New York, 182 pp.

  • Novak, D. R., and B. A. Colle, 2012: Diagnosing snowband predictability using a multimodel ensemble system. Wea. Forecasting, 27, 565585, doi:10.1175/WAF-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An observational study of cold season-banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., J. S. Waldstreicher, D. Keyser, and L. F. Bosart, 2006: A forecast strategy for anticipating cold season mesoscale band formation within eastern U.S. cyclones. Wea. Forecasting, 21, 323, doi:10.1175/WAF907.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and S. E. Yuter, 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and R. McTaggart-Cowan, 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., and T. T. Warner, 1993: Nonlinear hydrostatic conditional symmetric instability: Implications for numerical weather prediction. Mon. Wea. Rev., 121, 18211833, doi:10.1175/1520-0493(1993)121<1821:NHCSII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. 1, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, doi:10.1175/JAS-D-14-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2014a: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014b: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, doi:10.1175/MWR-D-14-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, G. W., and R. Beaubien, 1996: Radar observations of snow formation in a warm pre-frontal snowband. Atmos.–Ocean, 34, 605626, doi:10.1080/07055900.1996.9649579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivas Soriano, L. J., and E. L. García Díez, 1997: Effect of ice on the generation of a generalized potential vorticity. J. Atmos. Sci., 54, 13851387, doi:10.1175/1520-0469(1997)054<1385:EOIOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenow, A. R., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, 234A, 346362, doi:10.1098/rspa.1956.0039.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and G. Vaughan, 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443466, doi:10.1175/2010BAMS3057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791, doi:10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, B. C., and J. E. Martin, 2007: A synoptic climatology and composite analysis of the Alberta clipper. Wea. Forecasting, 22, 315333, doi:10.1175/WAF982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zishka, K. M., and P. J. Smith, 1980: The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Wea. Rev., 108, 387401, doi:10.1175/1520-0493(1980)108<0387:TCOCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 755 183 14
PDF Downloads 620 146 9