Revised Parameterization of Air–Sea Exchanges in High Winds for Operational Numerical Prediction: Impact on Tropical Cyclone Track, Intensity, and Rapid Intensification

Yimin Ma Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Yimin Ma in
Current site
Google Scholar
PubMed
Close
,
Noel E. Davidson Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Noel E. Davidson in
Current site
Google Scholar
PubMed
Close
,
Yi Xiao Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by Yi Xiao in
Current site
Google Scholar
PubMed
Close
, and
Jian-Wen Bao NOAA/ESRL, Boulder, Colorado

Search for other papers by Jian-Wen Bao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In high-wind conditions, sea spray, in conjunction with a generally decreasing drag coefficient for increasing winds, greatly modulates surface heat and momentum fluxes. It has been suggested that the process can be particularly important for the prediction of tropical cyclones (TCs), yet its robust application in operational forecast systems has remained elusive. A sea spray inclusion scheme and a modified algorithm for momentum exchange have been implemented in the Australian Bureau of Meteorology’s current operational TC model. Forecasts for a limited sample of TCs demonstrate that the revised parameterizations improve initialized and forecast intensities, while mostly maintaining track prediction skill. TC Yasi (2011) has been studied for impacts of the revised parameterization on rapid intensification (RI). Compared with the conventional bulk air–sea exchange parameterization, the revised version simulates a cooler and moister region near the surface in the eyewall/eye region, adjusts the RI evolution by an earlier and stronger subsidence in the eye, and simulates a stronger radial pulsating of the eye and eyewall convection on relatively short time scales. The inclusion of the new scheme enhances RI features characterized by eyewall ascent, radial convergence, and inertial stability inside the radius of azimuthal-mean maximum wind over low- to midlevels, and by a ringlike radial distribution of relative vorticity above the boundary layer. In addition, it allows a higher maximum intensity wind speed based on Emanuel’s maximum potential intensity theory. It is shown that, as expected, this is mainly because of a larger ratio of enthalpy and momentum exchange coefficients.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The Centre for Australian Weather and Climate Research is a partnership between the Commonwealth Scientific and Industrial Research Organisation and the Bureau of Meteorology.

Corresponding author e-mail: Yimin Ma, yma@bom.gov.au

Abstract

In high-wind conditions, sea spray, in conjunction with a generally decreasing drag coefficient for increasing winds, greatly modulates surface heat and momentum fluxes. It has been suggested that the process can be particularly important for the prediction of tropical cyclones (TCs), yet its robust application in operational forecast systems has remained elusive. A sea spray inclusion scheme and a modified algorithm for momentum exchange have been implemented in the Australian Bureau of Meteorology’s current operational TC model. Forecasts for a limited sample of TCs demonstrate that the revised parameterizations improve initialized and forecast intensities, while mostly maintaining track prediction skill. TC Yasi (2011) has been studied for impacts of the revised parameterization on rapid intensification (RI). Compared with the conventional bulk air–sea exchange parameterization, the revised version simulates a cooler and moister region near the surface in the eyewall/eye region, adjusts the RI evolution by an earlier and stronger subsidence in the eye, and simulates a stronger radial pulsating of the eye and eyewall convection on relatively short time scales. The inclusion of the new scheme enhances RI features characterized by eyewall ascent, radial convergence, and inertial stability inside the radius of azimuthal-mean maximum wind over low- to midlevels, and by a ringlike radial distribution of relative vorticity above the boundary layer. In addition, it allows a higher maximum intensity wind speed based on Emanuel’s maximum potential intensity theory. It is shown that, as expected, this is mainly because of a larger ratio of enthalpy and momentum exchange coefficients.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

The Centre for Australian Weather and Climate Research is a partnership between the Commonwealth Scientific and Industrial Research Organisation and the Bureau of Meteorology.

Corresponding author e-mail: Yimin Ma, yma@bom.gov.au
Save
  • Andreas, E. L, 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 97, 11 42911 441, doi:10.1029/92JC00876.

  • Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619, doi:10.1175/2009JPO4232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445, doi:10.1175/2011JAS3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, doi:10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, doi:10.1175/2007JPO3813.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, doi:10.1175/MWR-D-11-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458, doi:10.1175/2009MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfers Experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158, doi:10.1175/2008JAS2707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Chen, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, doi:10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 2001: Air–Sea Interaction: Laws and Mechanisms. Cambridge University Press, 239 pp.

    • Crossref
    • Export Citation
  • Davidson, N. E., and Coauthors, 2014: ACCESS-TC: Vortex specification, 4D-VAR initialization, verification, and structure diagnostics. Mon. Wea. Rev., 142, 12651289, doi:10.1175/MWR-D-13-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1982: The dependence of the aerodynamic drag coefficient on wave parameters. Preprints, First Int. Conf. on Meteorology and Air–Sea Interaction of the Coastal Zone, The Hague, Netherlands, Amer. Meteor. Soc., 381–387.

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, doi:10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, doi:10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 2007: Oceanic latent heat fluxes: Consistency with the atmospheric hydrological and energy cycles and general circulation modelling. J. Geophys. Res., 112, D06115, doi:10.1029/2006JD007324.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Wea. Forecasting, 22, 747762, doi:10.1175/WAF1015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, doi:10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and S. E. Larsen, 1986: Inertial-dissipation methods and turbulent fluxes at the air–ocean interface. Bound.-Layer Meteor., 34, 287301, doi:10.1007/BF00122383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1994: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., C. W. Fairall, and J.-W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange—Physics, Chemistry and Dynamics, G. Geernaert, Ed., Kluwer, 363–410.

    • Crossref
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482, doi:10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., C. Guan, and L. Xie, 2012: The wave state and sea spray related parameterization of wind stress applicable to from low to extreme winds. J. Geophys. Res., 117, C00J22, doi:10.1029/2011JC007786.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and J. A. Businger, 1975: Temperature profile in the molecular sublayer near the interface of a fluid in turbulent motion. Geophys. Res. Lett., 2, 403404, doi:10.1029/GL002i009p00403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A., 2007: The parameterisation of turbulent fluxes in the boundary layer. UM Documentation Paper 24, Met Office, 55 pp.

  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, doi:10.1007/s10546-004-3647-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112129, doi:10.1175/JAS-D-11-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, doi:10.1002/qj.2283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013: Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteor. Oceanogr. J., 65, 265284.

  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347362, doi:10.1002/qj.32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709726, doi:10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea-surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109142, doi:10.1007/BF00122064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Eijk, A. M. J., B. S. Tranchant, and P. G. Mestayer, 2001: SeaCluse: Numerical simulation of evaporating sea spray droplets. J. Geophys. Res., 106, 25732588, doi:10.1029/2000JC000377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, doi:10.1175/2009JAS3143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500, doi:10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met. Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, doi:10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, doi:10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, M., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727740, doi:10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541558, doi:10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings, and V. C. Cornell, 1998: Wind stress measurements from the open ocean corrected for airflow distortion by the ship. J. Phys. Oceanogr., 28, 15111526, doi:10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 30323038, doi:10.1175/1520-0493(1999)127<3032:TEODHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 78 4
PDF Downloads 214 55 4