Applying Fuzzy Clustering to a Multimodel Ensemble for U.S. East Coast Winter Storms: Scenario Identification and Forecast Verification

Minghua Zheng School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Minghua Zheng in
Current site
Google Scholar
PubMed
Close
,
Edmund K. M. Chang School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Edmund K. M. Chang in
Current site
Google Scholar
PubMed
Close
,
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
,
Yan Luo NOAA/NCEP/NWS/EMC, College Park, Maryland

Search for other papers by Yan Luo in
Current site
Google Scholar
PubMed
Close
, and
YueJian Zhu NOAA/NCEP/NWS/EMC, College Park, Maryland

Search for other papers by YueJian Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article introduces a method for objectively separating and validating forecast scenarios within a large multimodel ensemble for the medium-range (3–7 day) forecasts of extratropical cyclones impacting the U.S. East Coast. The method applies fuzzy clustering to the principal components (PCs) of empirical orthogonal function (EOF) analysis on mean sea level pressure (MSLP) from a 90-member combination of the global ensembles from the National Centers for Environmental Prediction, the Canadian Meteorological Center, and the European Centre for Medium-Range Weather Forecasts. Two representative cases are presented to illustrate the applications of this method. Application to the 26–28 January 2015 event demonstrates that the forecast scenarios determined by the fuzzy clustering method are well separated and consistent in different state variables (i.e., MSLP, 500-hPa geopotential height, and total precipitation). The fuzzy clustering method and an existing ensemble sensitivity method are applied to the 26–28 December 2010 event to investigate forecast uncertainty, which demonstrates that these two methods are complementary to each other and can be used in the operations together to track the evolution of forecast uncertainty. For past cases one can define a cluster close to the analysis based on the projection of the analysis onto the PC base of clustering. This analysis group is validated using conventional validation metrics for both cases examined, and this analysis group has fewer errors than the other groups as well as the multimodel ensemble mean and individual model means.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WAF-D-16-0112.s1.

Corresponding author e-mail: Minghua Zheng, ming.h.zheng@gmail.com

Abstract

This article introduces a method for objectively separating and validating forecast scenarios within a large multimodel ensemble for the medium-range (3–7 day) forecasts of extratropical cyclones impacting the U.S. East Coast. The method applies fuzzy clustering to the principal components (PCs) of empirical orthogonal function (EOF) analysis on mean sea level pressure (MSLP) from a 90-member combination of the global ensembles from the National Centers for Environmental Prediction, the Canadian Meteorological Center, and the European Centre for Medium-Range Weather Forecasts. Two representative cases are presented to illustrate the applications of this method. Application to the 26–28 January 2015 event demonstrates that the forecast scenarios determined by the fuzzy clustering method are well separated and consistent in different state variables (i.e., MSLP, 500-hPa geopotential height, and total precipitation). The fuzzy clustering method and an existing ensemble sensitivity method are applied to the 26–28 December 2010 event to investigate forecast uncertainty, which demonstrates that these two methods are complementary to each other and can be used in the operations together to track the evolution of forecast uncertainty. For past cases one can define a cluster close to the analysis based on the projection of the analysis onto the PC base of clustering. This analysis group is validated using conventional validation metrics for both cases examined, and this analysis group has fewer errors than the other groups as well as the multimodel ensemble mean and individual model means.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WAF-D-16-0112.s1.

Corresponding author e-mail: Minghua Zheng, ming.h.zheng@gmail.com

Supplementary Materials

    • Supplemental Materials (DOCX 15.37 KB)
Save
  • Ahmed, M. N., S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, 2002: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging, 21, 193199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ancell, B., and G. J. Hakim, 2007: Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Rev., 135, 41174134, doi:10.1175/2007MWR1904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J. F., H. E. Rieder, D. E. Lee, and Y. Kushnir, 2015: The paths of extratropical cyclones associated with wintertime high-wind events in the northeastern United States. J. Appl. Meteor. Climatol., 54, 18711885, doi:10.1175/JAMC-D-14-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072, doi:10.1175/2010BAMS2853.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short‐range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brill, K. F., A. R. Fracasso, and C. M. Bailey, 2015: Applying a divisive clustering algorithm to a large ensemble for medium-range forecasting at the Weather Prediction Center. Wea. Forecasting, 30, 873891, doi:10.1175/WAF-D-14-00137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium-range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, doi:10.1175/MWR-D-11-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and M. E. Charles, 2011: Spatial distribution and evolution of extratropical cyclone errors over North America and its adjacent oceans in the NCEP Global Forecast System model. Wea. Forecasting, 26, 129149, doi:10.1175/2010WAF2222422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., F. Buonaiuto, M. J. Bowman, R. E. Wilson, R. Flood, R. Hunter, A. Mintz, and D. Hill, 2008: New York City’s vulnerability to coastal flooding. Bull. Amer. Meteor. Soc., 89, 829841, doi:10.1175/2007BAMS2401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. Rojowsky, and F. Buonaito, 2010: New York City storm surges: Climatology and an analysis of the wind and cyclone evolution. J. Appl. Meteor. Climatol., 49, 85100, doi:10.1175/2009JAMC2189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., and B. Zhou, 2011: A dynamical performance-ranking method for predicting individual ensemble member performance and its application to ensemble averaging. Mon. Wea. Rev., 139, 32843303, doi:10.1175/MWR-D-10-05007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fanning, A., 2015: Storm summary number 09 for mid-Atlantic to Northeast major winter storm. NCEP/Weather Prediction Center, College Park, MD. [Available online at http://www.wpc.ncep.noaa.gov/winter_storm_summaries/2015/storm2/stormsum_9.html.]

  • Ferranti, L., and S. Corti, 2011: New clustering products. ECMWF Newsletter, No. 127, ECMWF, Reading, United Kingdom, 6–12. [Available online at http://www.ecmwf.int/en/elibrary/14596-newsletter-no127-spring-2011.]

  • Flegenheimer, M., 2015: Leaders in New York and New Jersey defend shutdown for a blizzard that wasn’t. New York Times, 28 January. [Available online at http://www.nytimes.com/2015/01/28/nyregion/new-york-blizzard.html.]

  • Frankoski, N. J., and A. T. DeGaetano, 2011: An East Coast winter storm precipitation climatology. Int. J. Climatol., 31, 802814, doi:10.1002/joc.2121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, K. K., and Coauthors, 2016: The national blend of global models, version one. 23rd Conf. on Probability and Statistics in the Atmospheric Sciences, New Orleans, LA, Amer. Meteor. Soc., 1.3. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper285973.html.]

  • Grams, C. M., H. Wernli, M. Böttcher, J. Čampa, U. Corsmeier, S. C. Jones, and L. Wiegand, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246, doi:10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 12251242, doi:10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2011: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693, doi:10.1175/MWR-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. C. Jones, J. L. Evans, and P. A. Harr, 2011: Characteristics of the TIGGE multimodel ensemble prediction system in representing forecast variability associated with extratropical transition. Geophys. Res. Lett., 38, L12802, doi:10.1029/2011GL047275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maimon, O., and L. Rokach, Eds., 2005: The Data Mining and Knowledge Discovery Handbook. Springer, 1382 pp.

    • Crossref
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, doi:10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orrell, D., L. Smith, J. Barkmeijer, and T. N. Palmer, 2001: Model error in weather forecasting. Nonlinear Processes Geophys., 8, 357371, doi:10.5194/npg-8-357-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., C. Brankovic, F. Molteni, S. Tibaldi, L. Ferranti, A. Hollingsworth, U. Cubasch, and E. Klinker, 1990: The European Centre for Medium-Range Weather Forecasts (ECMWF) program on extended-range prediction. Bull. Amer. Meteor. Soc., 71, 13171330, doi:10.1175/1520-0477(1990)071<1317:TECFMR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Scott, A. J., and M. J. Symons, 1971: Clustering methods based on likelihood ratio criteria. Biometrics, 27, 387397, doi:10.2307/2529003.

  • Smith, L. A., 2001: Disentangling uncertainty and error: On the predictability of nonlinear systems. Nonlinear Dynamics and Statistics, A. I. Mees, Ed., Birkhäuser, 31–64.

    • Crossref
    • Export Citation
  • Tew, M. A., A. Stem, A. Horvitz, K. Gilbert, and D. T. Myrick, 2016: National Blend of Models: Transformational forecast change by the National Weather Service. Fourth Symp. on Building a Weather-Ready Nation, New Orleans, LA, Amer. Meteor. Soc., 6.2. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper286228.html.]

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, R. L., 2015: The importance of communicating uncertainties in forecasts: Overestimating the risks from winter storm Juno. Risk Anal., 35, 349353, doi:10.1111/risa.12398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeung, K. Y., and W. L. Ruzzo, 2001: Principal component analysis for clustering gene expression data. Bioinformatics, 17, 763774, doi:10.1093/bioinformatics/17.9.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the surprise snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, doi:10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, doi:10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 745 179 11
PDF Downloads 642 146 12