Performance of Basin-Scale HWRF Tropical Cyclone Track Forecasts

Ghassan J. Alaka Jr. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Ghassan J. Alaka Jr. in
Current site
Google Scholar
PubMed
Close
,
Xuejin Zhang Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Xuejin Zhang in
Current site
Google Scholar
PubMed
Close
,
Sundararaman G. Gopalakrishnan NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Sundararaman G. Gopalakrishnan in
Current site
Google Scholar
PubMed
Close
,
Stanley B. Goldenberg NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Stanley B. Goldenberg in
Current site
Google Scholar
PubMed
Close
, and
Frank D. Marks NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Hurricane Weather Research and Forecasting (HWRF) Model is a dynamical model that has shown annual improvements in its tropical cyclone (TC) track forecasts as a result of various modifications. This study focuses on an experimental version of HWRF, called the basin-scale HWRF (HWRF-B), configured with 1) a large, static outer domain to cover multiple TC basins and 2) multiple sets of high-resolution movable nests to produce forecasts for several TCs simultaneously. Although HWRF-B and the operational HWRF produced comparable average track errors for the 2011–14 Atlantic hurricane seasons, strengths of HWRF-B are identified and linked to its configuration differences. HWRF-B track forecasts were generally more accurate compared with the operational HWRF when at least one additional TC was simultaneously active in the Atlantic or east Pacific basins and, in particular, when additional TCs were greater than 3500 km away. In addition, at long lead times, HWRF-B average track errors were lower than for the operational HWRF for TCs initialized north of 25°N or west of 60°W, highlighting the sensitivity of TC track forecasts to the location of the operational HWRF’s outermost domain. A case study, performed on Hurricane Michael, corroborated these HWRF-B strengths. HWRF-B shows the potential to serve as an effective bridge between regional modeling systems and next-generational global efforts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WAF-D-16-0150.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ghassan J. Alaka, Jr., ghassan.alaka@noaa.gov

Abstract

The Hurricane Weather Research and Forecasting (HWRF) Model is a dynamical model that has shown annual improvements in its tropical cyclone (TC) track forecasts as a result of various modifications. This study focuses on an experimental version of HWRF, called the basin-scale HWRF (HWRF-B), configured with 1) a large, static outer domain to cover multiple TC basins and 2) multiple sets of high-resolution movable nests to produce forecasts for several TCs simultaneously. Although HWRF-B and the operational HWRF produced comparable average track errors for the 2011–14 Atlantic hurricane seasons, strengths of HWRF-B are identified and linked to its configuration differences. HWRF-B track forecasts were generally more accurate compared with the operational HWRF when at least one additional TC was simultaneously active in the Atlantic or east Pacific basins and, in particular, when additional TCs were greater than 3500 km away. In addition, at long lead times, HWRF-B average track errors were lower than for the operational HWRF for TCs initialized north of 25°N or west of 60°W, highlighting the sensitivity of TC track forecasts to the location of the operational HWRF’s outermost domain. A case study, performed on Hurricane Michael, corroborated these HWRF-B strengths. HWRF-B shows the potential to serve as an effective bridge between regional modeling systems and next-generational global efforts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WAF-D-16-0150.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ghassan J. Alaka, Jr., ghassan.alaka@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 144.93 KB)
Save
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549, doi:10.1175/2009MWR3090.1.

  • Aberson, S. D., 2011: The impact of dropwindsonde data from the THORPEX Pacific Area Regional Campaign and the NOAA Hurricane Field Program on tropical cyclone forecasts in the Global Forecast System. Mon. Wea. Rev., 139, 26892703, doi:10.1175/2011MWR3634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., and M. DeMaria, 1994: Verification of a nested barotropic hurricane track forecast model (VICBAR). Mon. Wea. Rev., 122, 28042815, doi:10.1175/1520-0493(1994)122<2804:VOANBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., V. Tallapragada, and S. G. Gopalakrishnan, 2015: Advances in tropical cyclone intensity forecasts. Mar. Technol. J., 49, 149160, doi:10.4031/MTSJ.49.6.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, doi:10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2016: 2015 hurricane season. National Hurricane Center Forecast Verification Rep., 69 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2015.pdf.]

  • Carr, L. E., R. L. Elsberry, and M. A. Booth, 1999: Condensed and updated version of the Systematic Approach Meteorological Knowledge Base western North Pacific. Naval Postgraduate School Rep. NPS-MR-00-001, 140 pp. [Available online at http://hdl.handle.net/10945/28702.]

  • Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 14751488, doi:10.1175/1520-0469(1975)032<1475:TSEAAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 2005: An efficient mixed-phase cloud and precipitation scheme for use in operational NWP models. Eos, Trans. Amer. Geophys. Union, 86 (Spring Meeting Suppl.), Abstract A42A-02.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., S. E. Feuer, J. Kaplan, and S. D. Aberson, 1996: Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde datasets. Mon. Wea. Rev., 124, 6484, doi:10.1175/1520-0493(1996)124<0064:TCMASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The mutual tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, doi:10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., S. G. Gopalakrishnan, V. Tallapragada, T. Quirino, F. Marks, S. Trahan, X. Zhang, and R. Atlas, 2015: The 2012 triply nested, high-resolution operational version of the Hurricane Weather Research and Forecasting Model (HWRF): Track and intensity forecast verifications. Wea. Forecasting, 30, 710729, doi:10.1175/WAF-D-14-00098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., Q. Liu, T. Marchok, D. Sheinin, N. Surgi, R. Tuleya, R. Yablonsky, and X. Zhang, 2010: Hurricane Weather Research and Forecasting (HWRF) Model scientific documentation. NOAA/NCAR/Development Testbed Center Rep., 75 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_final_2-2_cm.pdf.]

  • Gopalakrishnan, S. G., F. Marks, X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The Experimental HWRF System: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, doi:10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks, K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and Coauthors, 2016: 2015 HFIP R&D activities summary: Recent results and operational implementation. HFIP Tech. Rep. HFIP2016-1, 44 pp. [Available online at http://www.hfip.org/documents/HFIP_AnnualReport_FY2015.pdf.]

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Halliwell, G. R., Jr., S. Gopalakrishnan, F. Marks, and D. Willey, 2015: Idealized study of ocean impacts on tropical cyclone intensity forecasts. Mon. Wea. Rev., 143, 11421165, doi:10.1175/MWR-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., and D. A. Zelinsky, 2012: Tropical cyclone report: Hurricane Michael (AL132012), 3–11 September 2012. National Hurricane Center, 13 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL132012_Michael.pdf.]

  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893919, doi:10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, doi:10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, doi:10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: The use of mean layer winds as hurricane steering mechanism. National Hurricane Research Project Rep. 18, 24 pp. [Available online at http://www.aoml.noaa.gov/general/lib/TM/NHRP_18_1958.pdf.]

  • Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 43 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/CU_PHYS/Old_SAS.pdf.]

  • Pike, A. C., 1985: Geopotential heights and thicknesses as predictors of Atlantic tropical cyclone motion and intensity. Mon. Wea. Rev., 113, 931940, doi:10.1175/1520-0493(1985)113<0931:GHATAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., W. H. Haggard, and R. W. Sanborn, 1956: On the prediction of 24-hour hurricane motion. J. Meteor., 13, 415420, doi:10.1175/1520-0469(1956)013<0415:OTPOHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 90759096, doi:10.1029/89JD01598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirutis, J., and K. Miyakoda, 1990: Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Mon. Wea. Rev., 118, 10431064, doi:10.1175/1520-0493(1990)118<1043:SSPIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, doi:10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2014a: Hurricane Weather Research and Forecasting (HWRF) model: 2014 scientific documentation. Developmental Testbed Center Rep., 105 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.6a_ScientificDoc.pdf.]

  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I.-H. Kwon, 2014b: Evaluation of storm structure from the operational HWRF Model during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304, doi:10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and S. B. Goldenberg, 1987: The inclusion of high density satellite wind information in a barotropic hurricane-track forecast model. Preprints, 17th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 9093.

  • Vukicevic, T., A. Aksoy, P. Reasor, S. D. Aberson, K. J. Sellwood, and F. Marks, 2013: Joint impact of forecast tendency and state error biases in ensemble Kalman filter data assimilation of inner-core tropical cyclone observations. Mon. Wea. Rev., 141, 29923006, doi:10.1175/MWR-D-12-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, doi:10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., I. Ginis, B. Thomas, V. Tallapragada, D. Sheinin, and L. Bernardet, 2015: Description and analysis of the ocean component of NOAA’s operational Hurricane Weather Research and Forecasting Model (HWRF). J. Atmos. Oceanic Technol., 32, 144163, doi:10.1175/JTECH-D-14-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, K., X. Zhang, S. Gopalakrishnan, S. Aberson, R. Rogers, F. Marks, and R. Atlas, 2012: Performance of the experimental HWRF in the 2008 hurricane season. Nat. Hazards, 63, 14391449, doi:10.1007/s11069-011-9787-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. G. Gopalakrishnan, S. Trahan, T. S. Quirino, Q. Liu, Z. Zhang, G. J. Alaka, and V. Tallapragada, 2016: Representing multiple scales in the Hurricane Weather Research and Forecasting modeling system: Design of multiple sets of movable multilevel nesting and the basin-scale HWRF forecast application. Wea. Forecasting, 31, 20192034, doi:10.1175/WAF-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11 55811 576, doi:10.1002/2013JD020405.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 593 135 22
PDF Downloads 461 97 18