Comparing the Performance of Two Road Weather Models in the Netherlands

Virve Karsisto Finnish Meteorological Institute, and Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Virve Karsisto in
Current site
Google Scholar
PubMed
Close
,
Sander Tijm Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Sander Tijm in
Current site
Google Scholar
PubMed
Close
, and
Pertti Nurmi Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Pertti Nurmi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-quality road condition forecasts are a prerequisite for road authorities to ensure wintertime road safety. Harsh winter conditions can cause problems for traffic not only in countries where snowy winters are common but also in regions where the temperature drops below the freezing point occasionally. This study reports on the evaluation of the Royal Netherlands Meteorological Institute’s (KNMI) new road weather forecasting model by comparing it with the Finnish Meteorological Institute’s (FMI) road weather model, both run for 321 Dutch road weather stations, four times daily (0300, 0900, 1500, and 2100 UTC) during the test period, 15 January–28 February 2015. Road surface temperature forecasts by both models were evaluated against observations. The KNMI model produced slightly more accurate forecasts than the FMI model. The main reason for the difference is probably due to the optimization of the physical properties of the KNMI model for the Netherlands, whereas the FMI model is designed for quite different Finnish wintertime meteorological conditions. However, in general the road surface temperature forecasts were of quite comparable quality.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Virve Karsisto, virve.karsisto@fmi.fi

Abstract

High-quality road condition forecasts are a prerequisite for road authorities to ensure wintertime road safety. Harsh winter conditions can cause problems for traffic not only in countries where snowy winters are common but also in regions where the temperature drops below the freezing point occasionally. This study reports on the evaluation of the Royal Netherlands Meteorological Institute’s (KNMI) new road weather forecasting model by comparing it with the Finnish Meteorological Institute’s (FMI) road weather model, both run for 321 Dutch road weather stations, four times daily (0300, 0900, 1500, and 2100 UTC) during the test period, 15 January–28 February 2015. Road surface temperature forecasts by both models were evaluated against observations. The KNMI model produced slightly more accurate forecasts than the FMI model. The main reason for the difference is probably due to the optimization of the physical properties of the KNMI model for the Netherlands, whereas the FMI model is designed for quite different Finnish wintertime meteorological conditions. However, in general the road surface temperature forecasts were of quite comparable quality.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Virve Karsisto, virve.karsisto@fmi.fi
Save
  • Baas, P., and H. Van den Brink, 2014: The added value of the high-resolution HARMONIE model for deriving the HBCs: Contribution to WP 1 of the WTI 2017 Wind Modelling Project. KNMI Final Rep., 54 pp. [Available online at publicaties.minienm.nl/download-bijlage/61534/report-dec13-added-value-20140207-final.pdf.]

  • Bengtsson, L., and Coauthors, 2017: The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP system. Mon. Wea. Rev., doi:10.1175/MWR-D-16-0417.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogren, J., T. Gustavsson, M. Karlsson, and U. Postgård, 2000: The impact of screening on road surface temperature. Meteor. Appl., 7, 97104, doi:10.1017/S135048270000150X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1984: Evaporation into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Calder, I. R., 1990: Evaporation in the Uplands. John Wiley and Sons, 148 pp.

  • Campbell, G. S., 1985: Soil Physics with BASIC. Elsevier, 150 pp.

  • Campbell, G. S., 1986: An Introduction to Environmental Biophysics. Springer-Verlag, 159 pp.

  • Chapman, L., and J. E. Thornes, 2011: What spatial resolution do we need for a route-based road weather decision support system? Theor. Appl. Climatol., 104, 551559, doi:10.1007/s00704-011-0433-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, L., J. E. Thornes, and A. V. Bradley, 2001: Modeling of road surface temperature from a geographical parameter database. Part 2: Numerical. Meteor. Appl., 8, 421436, doi:10.1017/S1350482701004042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crevier, L. P., and Y. Delage, 2001: A new model for road-condition forecasting in Canada. J. Appl. Meteor., 40, 20262037, doi:10.1175/1520-0450(2001)040<2026:MANMFR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • David, Y., and M. L. Portal, Eds., 1985: Electronic traffic aids on major roads. Commission of the European Communities Rep. 9835, Science and Technology Policy Series, 68 pp. [Available online at https://bookshop.europa.eu/en/electronic-traffic-aids-on-major-roads-cost-30-bis-pbCDNW85003/.]

  • De Bruin, H., 1994: Micrometeorologie. Landbouwuniversiteit Wageningen, 159 pp.

  • Ebert, E., and Coauthors, 2013: Progress and challenges in forecast verification. Meteor. Appl., 20, 130139, doi:10.1002/met.1392.

  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

    • Crossref
    • Export Citation
  • Fujimoto, A., A. Saida, and T. Fukuhara, 2012: A new approach to modeling vehicle-induced heat and its thermal effects on road surface temperature. J. Appl. Meteor. Climatol., 51, 19801993, doi:10.1175/JAMC-D-11-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Hogan, R. J., and I. B. Mason, 2011: Deterministic forecasts of binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed., I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 31–59, doi:10.1002/9781119960003.ch3.

    • Crossref
    • Export Citation
  • Jacobs, W., and W. E. Raatz, 1996: Forecasting road-surface temperatures for different site characteristics. Meteor. Appl., 3, 243256, doi:10.1002/met.5060030306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juga, I., P. Nurmi, and M. Hippi, 2013: Statistical modelling of wintertime road surface friction. Meteor. Appl., 20, 318329, doi:10.1002/met.1285.

  • Kangas, M., M. Heikinheimo, and M. Hippi, 2015: RoadSurf—A modelling system for predicting road weather and road surface conditions. Meteor. Appl., 22, 544533, doi:10.1002/met.1486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karsisto, V., P. Nurmi, M. Kangas, M. Hippi, C. Fortelius, S. Niemelä, and H. Järvinen, 2016: Improving road weather model forecasts by adjusting the radiation input. Meteor. Appl., 23, 503513, doi:10.1002/met.1574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nysten, E., 1980: Determination and forecasting of road surface temperature in the COST 30 automatic road station. Finnish Meteorological Institute Tech Rep. 23, 32 pp.

  • Rayer, P. J., 1987: The Meteorological Office road surface temperature model. Meteor. Mag., 116, 180191.

  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, doi:10.1175/2008WAF2222159.1.

  • Seity, Y., P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier, C. Lac, and V. Masson, 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, J., and P. J. Lister, 1996: An automated nowcasting model of road surface temperature and state for winter road maintenance. J. Appl. Meteor., 35, 13521361, doi:10.1175/1520-0450(1996)035<1352:AANMOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornes, J. E., 1984: The prediction of ice formation on motorways in Britain. Ph.D. thesis, University of London, 404 pp. [Available online at http://discovery.ucl.ac.uk/1348922/1/336707.pdf.]

  • Thornes, J. E., and J. Shao, 1991: A comparison of UK ice prediction models. Meteor. Mag., 118, 9399.

  • Tourula, T., and M. Heikinheimo, 1998: Modelling evapotranspiration from a barley field over the growing season. Agric. For. Meteor., 91, 237250, doi:10.1016/S0168-1923(98)00065-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. HIRLAM-5 Project, 144 pp. [Available online at http://hirlam.org/index.php/hirlam-documentation/doc_download/270-hirlam-scientific-documentation-december-2002.]

  • Van Ulden, A. P., and A. A. M. Holtslag, 1985: Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor., 24, 11961207, doi:10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venäläinen, A., and M. Kangas, 2003: Estimation of winter road maintenance costs using climate data. Meteor. Appl., 10, 6973, doi:10.1017/S1350482703005073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2014: Forecast verification for the African severe weather forecasting demonstration projects. WMO 1132, 31 pp. [Available at https://www.wmo.int/pages/prog/www/Documents/1132_en.pdf.]

  • Yang, C. H., D. G. Yun, and J. G. Sung, 2012: Validation of road surface temperature prediction model using real-time weather forecasts. KSCE J. Civ. Eng., 16, 12891294, doi:10.1007/s12205-012-1649-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1325 360 40
PDF Downloads 331 55 6