The Influence of PBL Parameterization on the Practical Predictability of Convection Initiation during the Mesoscale Predictability Experiment (MPEX)

Bryan M. Burlingame Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Bryan M. Burlingame in
Current site
Google Scholar
PubMed
Close
,
Clark Evans Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Clark Evans in
Current site
Google Scholar
PubMed
Close
, and
Paul J. Roebber Atmospheric Science Program, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Paul J. Roebber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the influence of planetary boundary layer parameterization on short-range (0–15 h) convection initiation (CI) forecasts within convection-allowing ensembles that utilize subsynoptic-scale observations collected during the Mesoscale Predictability Experiment. Three cases, 19–20 May, 31 May–1 June, and 8–9 June 2013, are considered, each characterized by a different large-scale flow pattern. An object-based method is used to verify and analyze CI forecasts. Local mixing parameterizations have, relative to nonlocal mixing parameterizations, higher probabilities of detection but also higher false alarm ratios, such that the ensemble mean forecast skill only subtly varied between parameterizations considered. Temporal error distributions associated with matched events are approximately normal around a zero mean, suggesting little systematic timing bias. Spatial error distributions are skewed, with average mean (median) distance errors of approximately 44 km (28 km). Matched event cumulative distribution functions suggest limited forecast skill increases beyond temporal and spatial thresholds of 1 h and 100 km, respectively. Forecast skill variation is greatest between cases with smaller variation between PBL parameterizations or between individual ensemble members for a given case, implying greatest control on CI forecast skill by larger-scale features than PBL parameterization. In agreement with previous studies, local mixing parameterizations tend to produce simulated boundary layers that are too shallow, cool, and moist, while nonlocal mixing parameterizations tend to be deeper, warmer, and drier. Forecasts poorly resolve strong capping inversions across all parameterizations, which is hypothesized to result primarily from implicit numerical diffusion associated with the default finite-differencing formulation for vertical advection used herein.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Clark Evans, evans36@uwm.edu

Abstract

This study evaluates the influence of planetary boundary layer parameterization on short-range (0–15 h) convection initiation (CI) forecasts within convection-allowing ensembles that utilize subsynoptic-scale observations collected during the Mesoscale Predictability Experiment. Three cases, 19–20 May, 31 May–1 June, and 8–9 June 2013, are considered, each characterized by a different large-scale flow pattern. An object-based method is used to verify and analyze CI forecasts. Local mixing parameterizations have, relative to nonlocal mixing parameterizations, higher probabilities of detection but also higher false alarm ratios, such that the ensemble mean forecast skill only subtly varied between parameterizations considered. Temporal error distributions associated with matched events are approximately normal around a zero mean, suggesting little systematic timing bias. Spatial error distributions are skewed, with average mean (median) distance errors of approximately 44 km (28 km). Matched event cumulative distribution functions suggest limited forecast skill increases beyond temporal and spatial thresholds of 1 h and 100 km, respectively. Forecast skill variation is greatest between cases with smaller variation between PBL parameterizations or between individual ensemble members for a given case, implying greatest control on CI forecast skill by larger-scale features than PBL parameterization. In agreement with previous studies, local mixing parameterizations tend to produce simulated boundary layers that are too shallow, cool, and moist, while nonlocal mixing parameterizations tend to be deeper, warmer, and drier. Forecasts poorly resolve strong capping inversions across all parameterizations, which is hypothesized to result primarily from implicit numerical diffusion associated with the default finite-differencing formulation for vertical advection used herein.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Clark Evans, evans36@uwm.edu
Save
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burghardt, B., C. Evans, and P. Roebber, 2014: Assessing the predictability of convection initiation across the high plains using an object-based approach. Wea. Forecasting, 29, 403418, doi:10.1175/WAF-D-13-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CISL, 2012: Yellowstone. Computational and Information Systems Laboratory, National Center for Atmospheric Research. [Available online at http://n2t.net/ark:/85065/d7wd3xhc.]

  • Clark, A. J., M. C. Coniglio, B. E. Coffer, G. Thompson, M. Xue, and F. Kong, 2015a: Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF model simulations. Wea. Forecasting, 30, 613638, doi:10.1175/WAF-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2015b: Spring Forecasting Experiment 2015: Program overview and operations plan. NOAA/NSSL/Storm Prediction Center, 24 pp. [Available online at http://hwt.nssl.noaa.gov/Spring_2015/HWT_SFE_2015_OPS_plan_final.pdf.]

  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., S. M. Hitchcock, and K. H. Knopfmeier, 2016: Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX. Mon. Wea. Rev., 144, 43014325, doi:10.1175/MWR-D-16-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, A. N., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, doi:10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2004: Weather forecasting by humans—Heuristics and decision making. Wea. Forecasting, 19, 11151126, doi:10.1175/WAF-821.1.

  • Duda, J. D., and W. A. Gallus Jr., 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, doi:10.1175/WAF-D-13-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., and P. J. Roebber, 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18, 782794, doi:10.1175/1520-0434(2003)018<0782:SHNPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, doi:10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and D. Niyogi, 2007: The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Mon. Wea. Rev., 135, 30133032, doi:10.1175/MWR3449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311843, doi:10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jirak, I., A. Clark, J. Correia, K. Knopfmeier, C. Melick, B. Twiest, M. Coniglio, and S. Weiss, 2015: Spring Forecasting Experiment 2015: Preliminary findings and results. NOAA/NSSL/Storm Prediction Center, 32 pp. [Available online at http://hwt.nssl.noaa.gov/Spring_2015/HWT_SFE_2015_Prelim_Findings_Final.pdf.]

  • Jorgensen, D. P., and T. M. Weckwerth, 2003: Forcing and organization of convective systems. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 75–103.

    • Crossref
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2017: Collaborative efforts between the U.S. and U.K. to advance prediction of high-impact weather. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00199.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., 2012: Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human and Environmental Applications. Springer, 320 pp.

    • Crossref
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 29, 701709, 701–709, doi:10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. W. Humphrey, 2014: A MapReduce technique to mosaic continental-scale weather radar data in real-time. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 721732, doi:10.1109/JSTARS.2013.2282040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, doi:10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, doi:10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Ocean. Atmos. Technol., 26, 523537, doi:10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., C. Karstens, J. Krause, and L. Tang, 2014: Quality control of weather radar using polarimetric variables. J. Atmos. Oceanic Technol., 31, 12341249, doi:10.1175/JTECH-D-13-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48, 23502366, doi:10.1175/1520-0469(1991)048<2350:ANCSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, doi:10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2015: Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007. Int. J. Climatol., 35, 40474056, doi:10.1002/joc.4261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and C. Hannon, 2006: Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Wea. Rev., 134, 355374, doi:10.1175/MWR3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 397 pp.

    • Crossref
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, doi:10.1175/MWR3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, doi:10.1175/2008WAF2222159.1.

  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949, doi:10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble forecast system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, R. D. Torn, and M. L. Weisman, 2016: Impact of assimilating dropsonde observations from MPEX on ensemble forecasts of severe weather events. Mon. Wea. Rev., 144, 37993823, doi:10.1175/MWR-D-15-0407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Resolution dependence of initiation and upscale growth of deep convection in convection-allowing forecasts of the 31 May–1 June 2013 supercell and MCS. Mon. Wea. Rev., 143, 43314354, doi:10.1175/MWR-D-15-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 11581181, doi:10.1175/WAF-D-15-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, doi:10.1175/WAF-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

    • Crossref
    • Export Citation
  • Stratman, D. R., M. C. Coniglio, S. E. Koch, and M. Xue, 2013: Use of multiple verification methods to evaluate forecasts of convection from hot- and cold-start convection-allowing models. Wea. Forecasting, 28, 119138, doi:10.1175/WAF-D-12-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperian, and V. Perov, 2005: Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, doi:10.1175/MWR-D-11-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. S. Romine, 2015: Sensitivity of central Oklahoma convection forecasts to upstream potential vorticity anomalies during two strongly forced cases during MPEX. Mon. Wea. Rev., 143, 40644087, doi:10.1175/MWR-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. J. Stensrud, M. C. Coniglio, R. S. Schumacher, M. E. Baldwin, S. Waugh, and D. T. Conlee, 2016: Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective feedbacks. Bull. Amer. Meteor. Soc., 97, 329336, doi:10.1175/BAMS-D-14-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud, 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, doi:10.1175/MWR-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Klooster, S. L., and P. J. Roebber, 2009: Surface-based convective potential in the contiguous United States in a business-as-usual future climate. J. Climate, 22, 33173330, doi:10.1175/2009JCLI2697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, doi:10.5194/gmd-4-919-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, doi:10.1175/MWR3067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., H. V. Murphey, C. Flamant, J. Goldstein, and C. R. Pettet, 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, doi:10.1175/2007MWR2128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, doi:10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S., and Coauthors, 2011: Experimental Forecast Program Spring Experiment 2011: Program overview and operations plan. NOAA/NSSL/Storm Prediction Center, 62 pp. [Available online at http://hwt.nssl.noaa.gov/Spring_2011/Spring_Experiment_2011_ops_plan_13May_v5.pdf.]

  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic Press, 500 pp.

  • Wilks, D. S., 2010: Sampling distributions of the Brier score and Brier skill score under serial dependence. Quart. J. Roy. Meteor. Soc., 136, 21092118, doi:10.1002/qj.709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006a: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149171, doi:10.1175/MWR3071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and W. J. Martin, 2006b: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part II: Horizontal convective rolls and convective initiation. Mon. Wea. Rev., 134, 172191, doi:10.1175/MWR3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, doi:10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 852 625 86
PDF Downloads 251 82 11