GEFS Precipitation Forecasts and the Implications of Statistical Downscaling over the Western United States

Wyndam R. Lewis Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Wyndam R. Lewis in
Current site
Google Scholar
PubMed
Close
,
W. James Steenburgh Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
,
Trevor I. Alcott NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Trevor I. Alcott in
Current site
Google Scholar
PubMed
Close
, and
Jonathan J. Rutz NOAA/NWS/Western Region Headquarters, Salt Lake City, Utah

Search for other papers by Jonathan J. Rutz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Contemporary operational medium-range ensemble modeling systems produce quantitative precipitation forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble Forecast System (GEFS) QPFs are verified using daily (24 h) Snow Telemetry (SNOTEL) observations over the western United States, which tend to be located at upper elevations where the orographic enhancement of precipitation is pronounced. Results indicate widespread dry biases, which reflect the infrequent production of larger 24-h precipitation events (≳22.9 mm in Pacific ranges and ≳10.2 mm in the interior ranges) compared with observed. Performance metrics, such as equitable threat score (ETS), hit rate, and false alarm ratio, generally worsen from the coast toward the interior. Probabilistic QPFs exhibit low reliability, and the ensemble spread captures only ~30% of upper-quartile events at day 5. In an effort to improve QPFs without exacerbating computing demands, statistical downscaling is explored based on high-resolution climatological precipitation analyses from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM), an approach frequently used by operational forecasters. Such downscaling improves model biases, ETSs, and hit rates. However, 47% of downscaled QPFs for upper-quartile events are false alarms at day 1, and the ensemble spread captures only 56% of the upper-quartile events at day 5. These results should help forecasters and hydrologists understand the capabilities and limitations of GEFS forecasts and statistical downscaling over the western United States and other regions of complex terrain.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: W. James Steenburgh, jim.steenburgh@utah.edu

Abstract

Contemporary operational medium-range ensemble modeling systems produce quantitative precipitation forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble Forecast System (GEFS) QPFs are verified using daily (24 h) Snow Telemetry (SNOTEL) observations over the western United States, which tend to be located at upper elevations where the orographic enhancement of precipitation is pronounced. Results indicate widespread dry biases, which reflect the infrequent production of larger 24-h precipitation events (≳22.9 mm in Pacific ranges and ≳10.2 mm in the interior ranges) compared with observed. Performance metrics, such as equitable threat score (ETS), hit rate, and false alarm ratio, generally worsen from the coast toward the interior. Probabilistic QPFs exhibit low reliability, and the ensemble spread captures only ~30% of upper-quartile events at day 5. In an effort to improve QPFs without exacerbating computing demands, statistical downscaling is explored based on high-resolution climatological precipitation analyses from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM), an approach frequently used by operational forecasters. Such downscaling improves model biases, ETSs, and hit rates. However, 47% of downscaled QPFs for upper-quartile events are false alarms at day 1, and the ensemble spread captures only 56% of the upper-quartile events at day 5. These results should help forecasters and hydrologists understand the capabilities and limitations of GEFS forecasts and statistical downscaling over the western United States and other regions of complex terrain.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: W. James Steenburgh, jim.steenburgh@utah.edu
Save
  • Avanzi, F., C. D. Michele, A. Ghezzi, C. Jommi, and M. Pepe, 2014: A processing–modeling routine to use SNOTEL hourly data in snowpack dynamic models. Adv. Water Resour., 73, 1629, doi:10.1016/j.advwatres.2014.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, M. A., G. M. Lackmann, K. M. Mahoney, T. E. Workoff, and T. M. Hamill, 2014: Verification of quantitative precipitation reforecasts over the southeastern United States. Wea. Forecasting, 29, 11991207, doi:10.1175/WAF-D-14-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and T. L. Mote, 2015: Characteristics of winter-precipitation-related transportation fatalities in the United States. Wea. Climate Soc., 7, 133144, doi:10.1175/WCAS-D-14-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bontron, G., and C. Obled, 2005: A probabilistic adaptation of meteorological model outputs to hydrological forecasting. Houille Blanche, 1, 2328, doi:10.1051/lhb:200501002.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: The statistical theory of turbulence and the problem of diffusion in the atmosphere. J. Meteor., 7, 283290, doi:10.1175/1520-0469(1950)007<0283:TSTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocker, J., and L. A. Smith, 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, doi:10.1175/WAF993.1.

  • Charles, M. E., and B. A. Colle, 2009: Verification of extratropical cyclones with the NCEP operational models. Part I: Analysis errors and short-term NAM and GFS forecasts. Wea. Forecasting, 24, 11731190, doi:10.1175/2009WAF2222169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1996: Snowstorms. Encyclopedia of Weather and Climate, S. H. Schneider, Ed., Vol. 2, Oxford University Press, 700–703.

  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and M. K. Walters, 1998: Calibrated probabilistic quantitative precipitation forecasts based on the MRF ensemble. Wea. Forecasting, 13, 11321147, doi:10.1175/1520-0434(1998)013<1132:CPQPFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fassnacht, S. R., 2004: Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA. Hydrol. Processes, 18, 34813492, doi:10.1002/hyp.5806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraley, C., A. E. Raftery, and T. Gneiting, 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Wea. Rev., 138, 190202, doi:10.1175/2009MWR3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., R. M. Rasmussen, C. Liu, K. Ikeda, D. J. Gochis, M. P. Clark, J. Dudhia, and G. Thompson, 2012: A comparison of statistical and dynamic downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281, doi:10.1175/2011JCLI4109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1997: Reliability diagrams for multicategory probabilistic forecasts. Wea. Forecasting, 12, 736741, doi:10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous United States. Mon. Wea. Rev., 140, 22322252, doi:10.1175/MWR-D-11-00220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711724, doi:10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, doi:10.1256/qj.06.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, doi:10.1175/2007MWR2411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, doi:10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatchett, B. J., S. Burak, J. J. Rutz, N. S. Oakley, E. H. Bair, and M. Kaplan, 2017: Avalanche fatalities during atmospheric river events in the United States. J. Hydrometeor., doi:10.1175/JHM-D-16-0219.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, NCEP/CPC. [Available online at http://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/.]

  • Hou, D., and Coauthors, 2014: Climatology-Calibrated Precipitation Analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., Y. Zhu, X. Zhou, R. Wobus, J. Peng, Y. Luo, and B. Cui, 2015: The 2015 upgrade of NCEP’s Global Ensemble Forecast System (GEFS). 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 2A.6. [Available online at https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273406.html.]

  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, doi:10.1016/j.atmosres.2010.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junker, N. W., J. E. Hoke, B. E. Sullivan, K. F. Brill, and F. J. Hughes, 1992: Seasonal geographic variations in quantitative precipitation prediction by NMC’s nested-grid model and medium-range forecast model. Wea. Forecasting, 7, 410429, doi:10.1175/1520-0434(1992)007<0410:SAGVIQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., and C. Kottmeier, 2006: Orographic enhancement of precipitation over low mountain ranges. Part II: Simulations of heavy precipitation events over southwest Germany. J. Appl. Meteor. Climatol., 45, 10411055, doi:10.1175/JAM2390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsigli, C., A. Montani, F. Nerozzi, T. Paccagnella, S. Tibaldi, F. Molteni, and R. Buizza, 2001: A strategy for high-resolution ensemble prediction. Part II: Limited-area experiments in four Alpine flood events. Quart. J. Roy. Meteor. Soc., 127, 20952115, doi:10.1002/qj.49712757613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 2003: Binary events. Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 37–76.

  • Mullen, S. L., and R. Buizza, 2001: Quantitative precipitation forecasts over the United States by the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 129, 638663, doi:10.1175/1520-0493(2001)129<0638:QPFOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: Technical implementation notice 15-43. NOAA/National Weather Service. [Available online at http://www.nws.noaa.gov/os/notification/tin15-43gefs.htm.]

  • Parker, L. E., and J. T. Abatzoglou, 2016: Spatial coherence of extreme precipitation events in the northwestern United States. Int. J. Climatol., 36, 24512460, doi:10.1002/joc.4504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, G. K., J. Alpert, and W. Ebisuzaki, 2006: NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull. Amer. Meteor. Soc., 87, 327341, doi:10.1175/BAMS-87-3-327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and W. J. Steenburgh, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, doi:10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 45784596, doi:10.1175/MWR-D-15-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schirmer, M., and B. Jamieson, 2015: Verification of analyzed and forecasted winter precipitation in complex terrain. Cryosphere, 9, 587601, doi:10.5194/tc-9-587-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and K. J. Kok, 2010: A comparison between raw ensemble output, (modified) Bayesian model averaging, and extended logistic regression using ECMWF ensemble precipitation reforecasts. Mon. Wea. Rev., 138, 41994211, doi:10.1175/2010MWR3285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, and A. Frei, 2001: Characteristics of larger snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, doi:10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 32093220, doi:10.1175/MWR3441.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. L., S. E. Yuter, P. J. Neiman, and D. E. Kingsmill, 2010: Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100, doi:10.1175/2009MWR2939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036, doi:10.1175/1520-0434(2003)018<1018:OHIIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2004: One hundred inches in one hundred hours: The complex evolution of an intermountain winter storm cycle. Bull. Amer. Meteor. Soc., 85, 1620, doi:10.1175/BAMS-85-1-16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., 2014: Secrets of the Greatest Snow on Earth. Utah State University Press, 244 pp.

  • Stensrud, D. J., H. E. Brooks, J. Du, S. Tracton, and E. Rogers, 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127, 433446, doi:10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and Coauthors, 1995: Winter storms over Canada. Atmos.–Ocean, 33, 223247, doi:10.1080/07055900.1995.9649533.

  • Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 137–163.

  • Tremper, B., 2008: Staying Alive in Avalanche Terrain. Mountaineers Books, 318 pp.

  • U.S. Department of the Interior, 2012: Flood of January 1997 in the Truckee River basin, western Nevada. USGS Fact Sheet FS-123-97, 2 pp. [Available online at http://pubs.usgs.gov/fs/1997/0123/report.pdf.]

  • Van Haren, R., R. J. Haarsma, G. J. Van Oldenborgh, and W. Hazeleger, 2015: Resolution dependence of European precipitation in a state-of-the-art atmospheric general circulation model. J. Climate, 28, 51345149, doi:10.1175/JCLI-D-14-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 29953008, doi:10.1029/98WR02577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006a: Comparison of ensemble-MOS methods in the Lorenz ’96 setting. Meteor. Appl., 13, 243256, doi:10.1017/S1350482706002192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006b: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. Leung, V. Sridhar, and D. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8” standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, H., S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H. H. Juang, 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM ensemble system. Mon. Wea. Rev., 133, 279294, doi:10.1175/MWR-2858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1339 612 124
PDF Downloads 753 178 11