Impact of Assimilating Underwater Glider Data on Hurricane Gonzalo (2014) Forecasts

Jili Dong I. M. System Group, Inc., Rockville, Maryland
Marine Modeling and Analysis Branch, NOAA/Environmental Modeling Center, College Park, Maryland

Search for other papers by Jili Dong in
Current site
Google Scholar
PubMed
Close
,
Ricardo Domingues Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Ricardo Domingues in
Current site
Google Scholar
PubMed
Close
,
Gustavo Goni Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Gustavo Goni in
Current site
Google Scholar
PubMed
Close
,
George Halliwell Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by George Halliwell in
Current site
Google Scholar
PubMed
Close
,
Hyun-Sook Kim I. M. System Group, Inc., Rockville, Maryland
Marine Modeling and Analysis Branch, NOAA/Environmental Modeling Center, College Park, Maryland

Search for other papers by Hyun-Sook Kim in
Current site
Google Scholar
PubMed
Close
,
Sang-Ki Lee Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Sang-Ki Lee in
Current site
Google Scholar
PubMed
Close
,
Michael Mehari Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Michael Mehari in
Current site
Google Scholar
PubMed
Close
,
Francis Bringas Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Francis Bringas in
Current site
Google Scholar
PubMed
Close
,
Julio Morell Department of Marine Sciences, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico

Search for other papers by Julio Morell in
Current site
Google Scholar
PubMed
Close
, and
Luis Pomales Department of Marine Sciences, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico

Search for other papers by Luis Pomales in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The initialization of ocean conditions is essential to coupled tropical cyclone (TC) forecasts. This study investigates the impact of ocean observation assimilation, particularly underwater glider data, on high-resolution coupled TC forecasts. Using the coupled Hurricane Weather Research and Forecasting (HWRF) Model–Hybrid Coordinate Ocean Model (HYCOM) system, numerical experiments are performed by assimilating underwater glider observations alone and with other standard ocean observations for the forecast of Hurricane Gonzalo (2014). The glider observations are able to provide valuable information on subsurface ocean thermal and saline structure, even with their limited spatial coverage along the storm track and the relatively small amount of data assimilated. Through the assimilation of underwater glider observations, the prestorm thermal and saline structures of initial upper-ocean conditions are significantly improved near the location of glider observations, though the impact is localized because of the limited coverage of glider data. The ocean initial conditions are best represented when both the standard ocean observations and the underwater glider data are assimilated together. The barrier layer and the associated sharp density gradient in the upper ocean are successfully represented in the ocean initial conditions only with the use of underwater glider observations. The upper-ocean temperature and salinity forecasts in the first 48 h are improved by assimilating both underwater glider and standard ocean observations. The assimilation of glider observations alone does not make a large impact on the intensity forecast due to their limited coverage along the storm track. The 126-h intensity forecast of Hurricane Gonzalo is improved moderately through assimilating both underwater glider data and standard ocean observations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jili Dong, jili.dong@noaa.gov

Abstract

The initialization of ocean conditions is essential to coupled tropical cyclone (TC) forecasts. This study investigates the impact of ocean observation assimilation, particularly underwater glider data, on high-resolution coupled TC forecasts. Using the coupled Hurricane Weather Research and Forecasting (HWRF) Model–Hybrid Coordinate Ocean Model (HYCOM) system, numerical experiments are performed by assimilating underwater glider observations alone and with other standard ocean observations for the forecast of Hurricane Gonzalo (2014). The glider observations are able to provide valuable information on subsurface ocean thermal and saline structure, even with their limited spatial coverage along the storm track and the relatively small amount of data assimilated. Through the assimilation of underwater glider observations, the prestorm thermal and saline structures of initial upper-ocean conditions are significantly improved near the location of glider observations, though the impact is localized because of the limited coverage of glider data. The ocean initial conditions are best represented when both the standard ocean observations and the underwater glider data are assimilated together. The barrier layer and the associated sharp density gradient in the upper ocean are successfully represented in the ocean initial conditions only with the use of underwater glider observations. The upper-ocean temperature and salinity forecasts in the first 48 h are improved by assimilating both underwater glider and standard ocean observations. The assimilation of glider observations alone does not make a large impact on the intensity forecast due to their limited coverage along the storm track. The 126-h intensity forecast of Hurricane Gonzalo is improved moderately through assimilating both underwater glider data and standard ocean observations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jili Dong, jili.dong@noaa.gov
Save
  • Balaguru, K., P. Chang, R. Saravanan, and C. J. Jang, 2012a: The barrier layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate. Tellus, 64A, 18162, doi:10.3402/tellusa.v64i0.18162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012b: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, doi:10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1989: Observations of the response of thermocline currents to a hurricane. J. Phys. Oceanogr., 19, 10171022, doi:10.1175/1520-0485(1989)019<1017:OOTROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, D. P., 2015: Tropical cyclone report: Hurricane Gonzalo (AL082014). National Hurricane Center, 30 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL082014_Gonzalo.pdf.]

  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128, doi:10.1146/annurev.fluid.37.061903.175702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2009: Movement of tropical cyclones. Global Perspectives on Tropical Cyclones—From Science to Mitigation, J. C. L. Chan and J. Kepert, Eds., World Scientific, 133–148.

    • Crossref
    • Export Citation
  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, doi:10.1175/MWR-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corredor, J., J. Morell, J. López, R. Armstrong, A. Dieppa, C. Cabanillas, A. Cabrera, and V. Hensley, 2003: Remote continental forcing of phytoplankton biogeochemistry: Observations across the “Caribbean-Atlantic front.” Geophys. Res. Lett., 30, 2057, doi:10.1029/2003GL018193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickey, T., and Coauthors, 1998: Upper-ocean temperature response to Hurricane Felix as measured by the Bermuda Testbed Mooring. Mon. Wea. Rev., 126, 11951201, doi:10.1175/1520-0493(1998)126<1195:UOTRTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobricic, S., N. Pinardi, P. Testor, and U. Send, 2010: Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean). Dyn. Atmos. Oceans, 50, 7892, doi:10.1016/j.dynatmoce.2010.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42, 71317138, doi:10.1002/2015GL065378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., G. Goni, and F. Bringas, 2015: Temporal variability of the Meridional Overturning Circulation in the South Atlantic between 20°S and 35°S. Geophys. Res. Lett., 42, 76557662, doi:10.1002/2015GL065603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gangopadhyay, A., A. Schmidt, L. Agel, O. Schofield, and J. Clark, 2013: Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Cont. Shelf Res., 63 (Suppl.), S159S176, doi:10.1016/j.csr.2012.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, S. M., and Coauthors, 2016: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun., 7, 10887, doi:10.1038/ncomms10887.

  • Goni, G., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, doi:10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G., J. A. Knaff, and I.-I. Lin, 2016: Tropical cyclone heat potential [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 96 (8), S120S122, doi:10.1175/2016BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and Coauthors, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, doi:10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., A. Srinivasan, V. Kourafalou, H. Yang, D. Willey, M. L. Hénaff, and R. Atlas, 2014: Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Oceanic Technol., 31, 105130, doi:10.1175/JTECH-D-13-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., Jr., S. Gopalakrishnan, F. Marks, and D. Willey, 2015: Idealized study of ocean impacts on tropical cyclone intensity forecasts. Mon. Wea. Rev., 143, 11421165, doi:10.1175/MWR-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, E. M., and Coauthors, 2014: Amazon River water in the northeastern Caribbean Sea and its effect on larval reef fish assemblages during April 2009. Fish. Oceanogr., 23, 472494, doi:10.1111/fog.12082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, E. M., P. R. Oke, F. Rizwi, and L. M. Murray, 2012: Assimilation of glider and mooring data into a coastal ocean model. Ocean Modell., 47, 113, doi:10.1016/j.ocemod.2011.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, P. S., K. M. M. Lwiza, R. K. Cowen, and G. J. Goni, 2000: Low-salinity pools at Barbados, West Indies: Their origin, frequency, and variability. J. Geophys. Res., 105, 19 69919 708, doi:10.1029/1999JC900328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, doi:10.1175/2009MWR2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., G. J. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, doi:10.1007/s11069-012-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, doi:10.1175/2007WAF2006111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., J. Verron, and J. M. Brankart, 2012: Potential outcomes of glider data assimilation in the Solomon Sea: Control of the water mass properties and parameter estimation. J. Mar. Syst., 94, 232246, doi:10.1016/j.jmarsys.2011.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourre, B., and J. Chiggiato, 2014: A comparison of the performance of the 3-D super-ensemble and an ensemble Kalman filter for short-range regional ocean prediction. Tellus, 66A, 21640, doi:10.3402/tellusa.v66.21640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., P. Sakov, and E. Schulz, 2009: A comparison of shelf observation platforms for assimilation in an eddy-resolving ocean model. Dyn. Atmos. Oceans, 48, 121142, doi:10.1016/j.dynatmoce.2009.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., M. Yaremchuk, and D. Nechaev, 2011: Variational assimilation of glider data in the Monterey Bay. J. Mar. Res., 69, 331346, doi:10.1357/002224011798765259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, C., L. Zheng, R. H. Weisberg, Y. Liu, and C. E. Lembke, 2014: Comparisons of different ensemble schemes for glider data assimilation on West Florida Shelf. Ocean Modell., 81, 1324, doi:10.1016/j.ocemod.2014.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, T. G., and P. J. Hogan, 2007: Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM. J. Geophys. Res., 112, C04013, doi:10.1029/2006JC003695.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, doi:10.1146/annurev-marine-122414-033913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and R. L. Elsberry, 1987: Near-inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17, 12491269, doi:10.1175/1520-0485(1987)017<1249:NIOCRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shulman, I., and Coauthors, 2009: Impact of glider data assimilation on the Monterey Bay model. Deep-Sea Res. II, 56, 188198, doi:10.1016/j.dsr2.2008.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2014: The air–sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, doi:10.1038/srep05306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) model: 2015 scientific documentation. Developmental Testbed Center, 113 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.]

  • Wang, C., and S.-K. Lee, 2007: Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett., 34, L02703, doi:10.1029/2006GL028579.

    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, doi:10.1016/j.dynatmoce.2011.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, doi:10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., D. Nechaev, and C. Pan, 2011: A hybrid background error covariance model for assimilating glider data into a coastal ocean model. Mon. Wea. Rev., 139, 18791890, doi:10.1175/2011MWR3510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., J. L. Wilkin, and H. G. Arango, 2010: Towards an integrated observation and modeling system in the New York Bight using variational methods. Part I: 4DVAR data assimilation. Ocean Modell., 35, 119133, doi:10.1016/j.ocemod.2010.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1210 361 40
PDF Downloads 559 137 13