Synoptic Analysis and Hindcast of an Intense Bow Echo in Western Europe: The 9 June 2014 Storm

Luca Mathias Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Luca Mathias in
Current site
Google Scholar
PubMed
Close
,
Volker Ermert Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Volker Ermert in
Current site
Google Scholar
PubMed
Close
,
Fanni D. Kelemen Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Fanni D. Kelemen in
Current site
Google Scholar
PubMed
Close
,
Patrick Ludwig Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

Search for other papers by Patrick Ludwig in
Current site
Google Scholar
PubMed
Close
, and
Joaquim G. Pinto Department of Meteorology, University of Reading, Reading, United Kingdom, and Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Joaquim G. Pinto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On Pentecost Monday, 9 June 2014, a severe linearly organized mesoscale convective system (MCS) hit Belgium and western Germany. This storm was one of the most severe thunderstorms in Germany in decades. The synoptic-scale and mesoscale characteristics of this storm are analyzed based on remote sensing data and in situ measurements. Moreover, the forecast potential of the storm is evaluated using sensitivity experiments with a regional climate model. The key ingredients for the development of the Pentecost storm were the concurrent presence of low-level moisture, atmospheric conditional instability, and wind shear. The synoptic and mesoscale analysis shows that the outflow of a decaying MCS above northern France triggered the storm, which exhibited the typical features of a bow echo like a bookend vortex and a rear-inflow jet. This resulted in hurricane-force wind gusts (reaching 40 m s−1) along a narrow swath in the Rhine–Ruhr region leading to substantial damage. Operational numerical weather prediction models mostly failed to forecast the storm, but high-resolution regional model hindcasts enable a realistic simulation of the storm. The model experiments reveal that the development of the bow echo is particularly sensitive to the initial wind field and the lower-tropospheric moisture content. Adequate initial and boundary conditions are therefore essential for realistic numerical forecasts of such a bow echo event. It is concluded that the Pentecost storm exhibited a comparable structure and a similar intensity to observed bow echo systems in the United States.

Current affiliation: Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luca Mathias, mathiasl@smail.uni-koeln.de

Abstract

On Pentecost Monday, 9 June 2014, a severe linearly organized mesoscale convective system (MCS) hit Belgium and western Germany. This storm was one of the most severe thunderstorms in Germany in decades. The synoptic-scale and mesoscale characteristics of this storm are analyzed based on remote sensing data and in situ measurements. Moreover, the forecast potential of the storm is evaluated using sensitivity experiments with a regional climate model. The key ingredients for the development of the Pentecost storm were the concurrent presence of low-level moisture, atmospheric conditional instability, and wind shear. The synoptic and mesoscale analysis shows that the outflow of a decaying MCS above northern France triggered the storm, which exhibited the typical features of a bow echo like a bookend vortex and a rear-inflow jet. This resulted in hurricane-force wind gusts (reaching 40 m s−1) along a narrow swath in the Rhine–Ruhr region leading to substantial damage. Operational numerical weather prediction models mostly failed to forecast the storm, but high-resolution regional model hindcasts enable a realistic simulation of the storm. The model experiments reveal that the development of the bow echo is particularly sensitive to the initial wind field and the lower-tropospheric moisture content. Adequate initial and boundary conditions are therefore essential for realistic numerical forecasts of such a bow echo event. It is concluded that the Pentecost storm exhibited a comparable structure and a similar intensity to observed bow echo systems in the United States.

Current affiliation: Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Luca Mathias, mathiasl@smail.uni-koeln.de
Save
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, doi:10.1175/MWR-D-12-00343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., S. C. Van den Heever, and R. H. Johnson, 2013: Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting, 28, 11881209, doi:10.1175/WAF-D-12-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D. Ketcham, 2004: Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Mon. Wea. Rev., 132, 22242242, doi:10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, R. J. Trapp, and G. Schmocker, 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296, doi:10.1175/MWR2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, and M. Raschendorfer, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and Coauthors, 2011: Initiation of deep convection at marginal instability in an ensemble of mesoscale models: A case-study from COPS. Quart. J. Roy. Meteor. Soc., 137, 118136, doi:10.1002/qj.707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthlott, C., B. Mühr, and C. Hoose, 2017: Sensitivity of the 2014 Pentecost storms over Germany to different model grids and microphysics schemes. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.3019, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., 2011: Overshooting cloud top detections using MSG SEVIRI infrared brightness temperatures and their relationship to severe weather over Europe. Atmos. Res., 99, 175189, doi:10.1016/j.atmosres.2010.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., K. A. Browning, A. M. Blyth, D. J. Parker, and P. A. Clark, 2006: A review of the initiation of precipitating convection in the United Kingdom. Quart. J. Roy. Meteor. Soc., 132, 10011020, doi:10.1256/qj.05.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betz, H.-D., K. Schmidt, P. Laroche, P. Blanchet, P. Oettinger, E. Defer, Z. Dziewit, and J. Konarski, 2009: LINET—An international lightning detection network in Europe. Atmos. Res., 91, 564573, doi:10.1016/j.atmosres.2008.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beyer, M., and H. Tuschy, 2015: A severe bow echo in western Germany on June 9, 2014: Forecasting and warning of a high impact weather event with the help of different tools and methods. Eighth European Conf. on Severe Storms, Wiener Neustadt, Austria, European Severe Storms Laboratory. [Available online at http://meetingorganizer.copernicus.org/ECSS2015/ECSS2015-114-2.pdf.]

  • Brooks, H. E., 2009: Proximity soundings for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2013: Severe thunderstorms and climate change. Atmos. Res., 123, 129138, doi:10.1016/j.atmosres.2012.04.002.

  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere edition. NOAA/National Severe Storms Laboratory, 55 pp. [Available online at https://www.nssl.noaa.gov/publications/dopplerguide/.]

  • Bryan, G., and M. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX-2. Mon. Wea. Rev., 138, 40764097, doi:10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and B. F. Smull, 1990: Doppler radar observations of a bow echo associated with a long-track severe windstorm. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 203–208.

  • Chisholm, A. J., 1973: Radar case studies and airflow models. Alberta Hailstorms, Meteor. Monogr., No. 36, Amer. Meteor. Soc., 1–36.

    • Crossref
    • Export Citation
  • Clark, A. J., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environment using sounding observations. Wea. Forecasting, 22, 10451062, doi:10.1175/WAF1040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and D. J. Stensrud, 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129, 15931616, doi:10.1175/1520-0493(2001)129<1593:SOAPDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from rapid update cycle analyses. Mon. Wea. Rev., 138, 35143539, doi:10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the maintenance of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deutsche Rück, 2015: Sturmdokumentation 2014 Deutschland. Deutsche Rückversicherung, Düsseldorf, Germany, 48 pp. [Available online at http://www.deutscherueck.de/fileadmin/user_upload/Sturmdoku_2014_WEB.pdf.]

  • Dixon, M., Z. Li, H. Lean, N. Roberts, and S. Ballard, 2009: Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Wea. Rev., 137, 15621584, doi:10.1175/2008MWR2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Deutscher Wetterdienst, Offenbach, Germany, 154 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, W. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic air mass environment. Bull. Amer. Meteor. Soc., 33, 303307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, doi:10.5194/nhess-9-405-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, doi:10.1007/s00382-014-2242-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp. [Available online at https://ntrs.nasa.gov/search.jsp?R=19780022828.]

  • Funk, T. W., K. E. Darmofal, J. D. Kirkpatrick, V. L. DeWald, R. W. Przybylinski, G. K. Schmocker, and Y. J. Lin, 1999: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and southern Indiana. Wea. Forecasting, 14, 976993, doi:10.1175/1520-0434(1999)014<0976:SRAMEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatzen, C., 2004: A derecho in Europe: Berlin, 10 July 2002. Wea. Forecasting, 19, 639645, doi:10.1175/1520-0434(2004)019<0639:ADIEBJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatzen, C., 2013: Warm-season severe wind events in Germany. Atmos. Res., 123, 197205, doi:10.1016/j.atmosres.2012.07.017.

  • Helmert, K., and Coauthors, 2014: DWDs new radar network and post-processing algorithm chain. Eighth European Conf. on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, DWD–DLR. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/237_Helmert.pdf.]

  • Hengstebeck, T., D. Heizenreder, P. Joe, and P. Lang, 2011: The mesocyclone detection algorithm of DWD. Sixth European Conf. on Severe Storms, Palma de Mallorca, Spain, European Severe Storms Laboratory. [Available online at http://www.essl.org/ECSS/2011/programme/abstracts/196.pdf.]

  • Hengstebeck, T., D. Heizenreder, and P. Joe, 2014: Detection of atmospheric rotation by means of the DWD weather radar network. Eighth European Conf. on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, DWD–DLR. [Available online at http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/196_Hengstebeck.pdf.]

  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

    • Crossref
    • Export Citation
  • Irsic Zibert, M., B. Strajnar, and J. Zibert, 2010: Cold-ring pattern on satellite images as indication of severe weather. Proc. 2010 EUMETSAT Meteorological Satellite Conf., Cordoba, Spain, EUMETSAT. [Available online at https://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P57_S7_12_IRSICZIB_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Jacobsen, I., and E. Heise, 1982: A new economic method for the computation of the surface temperature in numerical models. Contrib. Atmos. Phys., 55, 128141.

    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964, doi:10.1175/MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joe, P., H. J. Koppert, D. Heizenreder, B. Erbshäusser, W. Raatz, B. Reichert, and M. Rohn, 2005: Severe weather forecasting tools in NinJo. Symp. on Nowcasting and Very Short Range Forecasting, Toulouse, France, World Weather Research Programme, 7.13. [Available online at http://www.ninjo-workstation.com/fileadmin/files/downloads/publications/Pub_Joe_Toulouse_Severe_Weather_Forecasting.pdf.]

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of a midlatitude squall line. Mon. Wea. Rev., 116, 14441473, doi:10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective-scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, doi:10.1002/qj.2238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lange, H., and G. C. Craig, 2014: The impact of data assimilation length scales on analysis and prediction of convective storms. Mon. Wea. Rev., 142, 37813808, doi:10.1175/MWR-D-13-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1980: Severe thunderstorm radar identification techniques and warning criteria. NOAA Tech. Memo. NWS NSSFC-3, 60 pp. [Available from NOAA/Central Library, 1315 East–West Hwy., Silver Spring, MD 20910.]

  • Leutwyler, D., O. Fuhrer, X. Lapillonne, D. Lüthi, and C. Schär, 2016: Towards European-scale convection-resolving climate simulations with GPUs: A study with COSMO 4.19. Geosci. Model Dev., 9, 33933412, doi:10.5194/gmd-9-3393-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, S. A. Hoepp, A. H. Fink, and S. L. Gray, 2015: Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Mon. Wea. Rev., 143, 14171437, doi:10.1175/MWR-D-14-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Y. Chen, 2015: Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos., 120, 10 59310 618, doi:10.1002/2015JD023584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660, doi:10.1175/1520-0493(1997)125<0655:TDCWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikuš, P., and N. Strelec Mahović, 2013: Satellite-based overshooting top detection methods and the analysis of correlated weather conditions. Atmos. Res., 123, 268280, doi:10.1016/j.atmosres.2012.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, R., 1986: The Spanish plume—Testing the forecaster’s nerve. Meteor. Mag., 115, 349357.

  • Nolen, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soc., 40, 277279.

  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, doi:10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, doi:10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., P. Groenemeijer, D. Ryìva, and M. Kolaìř, 2015: Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Wea. Rev., 143, 48054821, doi:10.1175/MWR-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Punkka, A. J., J. Teittinen, and R. H. Johns, 2006: Synoptic and mesoscale analysis of a high-latitude derecho–severe thunderstorm outbreak in Finland on 5 July 2002. Wea. Forecasting, 21, 752763, doi:10.1175/WAF953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramis, C., J. Arus, and J. M. Lopez, 1997: Two cases of severe weather in Catalonia (Spain): An observational study. Meteor. Appl., 4, 207217, doi:10.1017/S1350482797000510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B., E. Raschke, and B. Weyres, 1991: A parameterization of broad band radiative transfer properties of water, ice, and mixed clouds. Beitr. Phys. Atmos., 64, 112.

    • Search Google Scholar
    • Export Citation
  • Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COMSO-CLM (CCLM). Meteor. Z., 17, 347348, doi:10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., and M. Xue, 2016: Bow-echo mesovortices: A review. Atmos. Res., 170, 113, doi:10.1016/j.atmosres.2015.11.003.

  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, W., H. H. Schiesser, M. Furger, and M. Jenni, 2000: The origin of severe winds in a tornadic bow-echo storm over northern Switzerland. Mon. Wea. Rev., 128, 192207, doi:10.1175/1520-0493(2000)128<0192:TOOSWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1989: A high plains squall line associated with severe surface winds. J. Atmos. Sci., 46, 281302, doi:10.1175/1520-0469(1989)046<0281:AHPSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, J. P., and U. Schättler, 2014: Kurze Beschreibung des Lokal-Modells Europa COSMO-EU (LME) und seine Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst, Offenbach, Germany, 81 pp. [Available online at https://www.dwd.de/SharedDocs/downloads/DE/modelldokumentationen/nwv/cosmo_eu/cosmo_eu_dbbeschr_201406.pdf?__blob=publicationFile&v=3.]

  • Schwartz, C. S., 2016: Improving large-domain convection-allowing forecasts with high- resolution analyses and ensemble data assimilation. Mon. Wea. Rev., 144, 17771803, doi:10.1175/MWR-D-15-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring shaped features atop convective clouds. Atmos. Res., 97, 8096, doi:10.1016/j.atmosres.2010.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584, doi:10.1175/1520-0469(1994)051<2563:TDEOSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, doi:10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, doi:10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Delden, A., 1998: The synoptic setting of a thundery low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65, 113131, doi:10.1007/BF01030272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006a: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2013 storm during BAMEX. Mon. Wea. Rev., 134, 27932812, doi:10.1175/MWR3215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006b: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829, doi:10.1175/MWR3216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., T. Hengstebeck, and P. Groenemeijer, 2016: Mesocyclones in central Europe as seen by radar. Atmos. Res., 168, 112120, doi:10.1016/j.atmosres.2015.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R., D. Kirshbaum, R. Plant, and H. Lean, 2014: A ‘Boscastle-type’ quasi-stationary convective system over the UK Southwest Peninsula. Quart. J. Roy. Meteor. Soc., 140, 240257, doi:10.1002/qj.2124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, doi:10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 26032622, doi:10.1175/1520-0469(1998)055<2603:MFTGOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes: Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, doi:10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. A. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Evans, and L. Bosart, 2013: The 8 May 2009 superderecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863892, doi:10.1175/WAF-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., R. J. Trapp, and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806, doi:10.1175/MWR3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 861 201 11
PDF Downloads 680 121 13