Tropical Cyclone Gale Wind Radii Estimates for the Western North Pacific

Charles R. Sampson Naval Research Laboratory, Monterey, California

Search for other papers by Charles R. Sampson in
Current site
Google Scholar
PubMed
Close
,
Edward M. Fukada NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by Edward M. Fukada in
Current site
Google Scholar
PubMed
Close
,
John A. Knaff NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
,
Brian R. Strahl Joint Typhoon Warning Center, Pearl Harbor, Hawaii

Search for other papers by Brian R. Strahl in
Current site
Google Scholar
PubMed
Close
,
Michael J. Brennan NOAA/National Hurricane Center, Miami, Florida

Search for other papers by Michael J. Brennan in
Current site
Google Scholar
PubMed
Close
, and
Timothy Marchok NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Timothy Marchok in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Joint Typhoon Warning Center’s (JTWC) forecast improvement goals include reducing 34-kt (1 kt = 0.514 m s−1) wind radii forecast errors, so accurate real-time estimates and postseason analysis of the 34-kt wind radii are critical to reaching this goal. Accurate real-time 34-kt wind radii estimates are also critical for decisions regarding base preparedness and asset protection, but still represent a significant operational challenge at JTWC for several reasons. These reasons include a paucity of observations, the timeliness and availability of guidance, a lack of analysis tools, and a perceived shortage of personnel to perform the analysis; however, the number of available objective wind radii estimates is expanding, and the topic of estimating 34-kt wind radii warrants revisiting. In this work an equally weighted mean of real-time 34-kt wind radii objective estimates that provides real-time, routine operational guidance is described. This objective method is also used to retrospectively produce a 2-yr (2014–15) 34-kt wind radii objective analysis, the results of which compare favorably to the postseason National Hurricane Center data (i.e., the best tracks), and a newly created best-track dataset for the western North Pacific seasons. This equally weighted mean, when compared with the individual 34-kt wind radii estimate methods, is shown to have among the lowest mean absolute errors and smallest biases. In an ancillary finding, the western North Pacific basin average 34-kt wind radii calculated from the 2014–15 seasons are estimated to be 134 n mi (1 n mi = 1.852 km), which is larger than the estimates for storms in either the Atlantic (95 n mi) or eastern North Pacific (82 n mi) basins for the same years.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Buck Sampson, buck.sampson@nrlmry.navy.mil

Abstract

The Joint Typhoon Warning Center’s (JTWC) forecast improvement goals include reducing 34-kt (1 kt = 0.514 m s−1) wind radii forecast errors, so accurate real-time estimates and postseason analysis of the 34-kt wind radii are critical to reaching this goal. Accurate real-time 34-kt wind radii estimates are also critical for decisions regarding base preparedness and asset protection, but still represent a significant operational challenge at JTWC for several reasons. These reasons include a paucity of observations, the timeliness and availability of guidance, a lack of analysis tools, and a perceived shortage of personnel to perform the analysis; however, the number of available objective wind radii estimates is expanding, and the topic of estimating 34-kt wind radii warrants revisiting. In this work an equally weighted mean of real-time 34-kt wind radii objective estimates that provides real-time, routine operational guidance is described. This objective method is also used to retrospectively produce a 2-yr (2014–15) 34-kt wind radii objective analysis, the results of which compare favorably to the postseason National Hurricane Center data (i.e., the best tracks), and a newly created best-track dataset for the western North Pacific seasons. This equally weighted mean, when compared with the individual 34-kt wind radii estimate methods, is shown to have among the lowest mean absolute errors and smallest biases. In an ancillary finding, the western North Pacific basin average 34-kt wind radii calculated from the 2014–15 seasons are estimated to be 134 n mi (1 n mi = 1.852 km), which is larger than the estimates for storms in either the Atlantic (95 n mi) or eastern North Pacific (82 n mi) basins for the same years.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Buck Sampson, buck.sampson@nrlmry.navy.mil
Save
  • Bates, J. M., and C. W. J. Granger, 1969: The combination of forecasts. Oper. Res., 20, 451468, doi:10.1057/jors.1969.103.

  • Bender, M. A., M. J. Morin, K. Emanuel, J. A. Knaff, C. Sampson, I. Ginis, and B. Thomas, 2016: Impact of storm structure and the environmental conditions in the rapid intensification of Hurricanes Katrina and Patricia. 32nd Conf. on Hurricanes and Tropical Meteorology, San Juan, PR, Amer. Meteor. Soc., 6D.2. [Available online at https://ams.confex.com/ams/32Hurr/webprogram/Paper293687.html.]

  • Bentamy, A., D. Croize-Fillon, and C. Perigaud, 2008: Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci., 4, 265274, doi:10.5194/os-4-265-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., and Coauthors, 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49, 32493272, doi:10.1109/TGRS.2011.2158438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Wea. Forecasting, 24, 621645, doi:10.1175/2008WAF2222188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and C. W. Landsea, 2016: An examination of model and official National Hurricane Center tropical cyclone size forecasts. Wea. Forecasting, 31, 12931300, doi:10.1175/WAF-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, and S.-Z. Lin, 2013: Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res., 118, 90119021, doi:10.1002/jgrd.50724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., X. Yang, and M. K. Tippett, 2013: Is unequal weighting significantly better than equal weighting for multi-model forecasting? Quart. J. Roy. Meteor. Soc., 139, 176183, doi:10.1002/qj.1961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Coauthors, 2013a: Improvements to the operational tropical cyclone wind speed probability model. Wea. Forecasting, 28, 586602, doi:10.1175/WAF-D-12-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., A. Schumacher, J. Dostalek, S. Longmore, L. Zhao, and L. Ma, 2013b: S-NPP microwave sounder-based TC products algorithm theoretical basis document. NOAA/NESDIS, 18 pp. [Available online at http://www1.ncdc.noaa.gov/pub/data/metadata/documents/C00937_Algorithm_Theoretical_Basis_Document_NTCP_v1.1.docx.]

  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, J. A. Knaff, and T. H. Vonder Haar, 2004: Evaluation of Advanced Microwave Sounder Unit (AMSU) tropical cyclone intensity and size estimation algorithm. J. Appl. Meteor., 43, 282296, doi:10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. App. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., E. A. Ritchie, and J. S. Tyo, 2016: The use of the deviation angle variance technique on geostationary satellite imagery to estimate tropical cyclone size parameters. Wea. Forecasting, 31, 16251642, doi:10.1175/WAF-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dostalek, J., G. Chirokova, J. Knaff, S. Longmore, R. T. DeMaria, A. B. Schumacher, and C. Sampson, 2016: Recent and future updates to the operational, satellite-based tropical cyclone products produced at the Cooperative Institute for Research in the Atmosphere. 32nd Conf. on Hurricanes and Tropical Meteorology, San Juan, PR, Amer. Meteor. Soc., 11C.7. [Available online at https://ams.confex.com/ams/32Hurr/webprogram/Paper293020.html.]

  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 45 pp. [Available online at ftp://satepsanone.nesdis.noaa.gov/Publications/Tropical/Dvorak_1984.pdf.]

  • Elliott, G., and M. Yamaguchi, 2014: Motion—Recent advances. Summary Rep. on Eighth Int. Workshop on Tropical Cyclones (IWTC-8), WMO, 44 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/Topic1_AdvancesinForecastingMotion.pdf.]

  • Goerss, J. S., and C. R. Sampson, 2014: Prediction of consensus tropical cyclone intensity forecast error. Wea. Forecasting, 29, 750762, doi:10.1175/WAF-D-13-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., C. R. Sampson, and J. Gross, 2004: A history of western North Pacific tropical cyclone track forecast skill. Wea. Forecasting, 19, 633638, doi:10.1175/1520-0434(2004)019<0633:AHOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D., D. S. Crosby, and L. Zhou, 2001: The limb adjustment of AMSU-A observations: Methodology and validation. J. Appl. Meteor., 40, 7083, doi:10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and N. Kitabatake, 2015: Structure and structure change. Eighth Int. Workshop on Tropical Cyclones, Jeju Island, South Korea, WMO, T4. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/Topic4.pdf.]

  • Kharin, V. V., and F. W. Zwiers, 2002: Climate predictions with multimodel ensembles. J. Climate, 15, 793799, doi:10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and B. A. Harper, 2010: Tropical cyclone surface wind structure and wind-pressure relationships. Seventh Int. Workshop on Tropical Cyclones, La Reunion, France, WMO, KN1. [Available online at https://www.wmo.int/pages/prog/arep/wwrp/tmr/otherfileformats/documents/KN1.pdf.]

  • Knaff, J. A., and C. R. Sampson, 2015: After a decade are Atlantic tropical cyclone gale force wind radii forecasts now skillful? Wea. Forecasting, 30, 702709, doi:10.1175/WAF-D-14-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. Guard, J. Kossin, T. Marchok, C. Sampson, T. Smith, and N. Surgi, 2006: Operational guidance and skill in forecasting structure change. Sixth Int. Workshop on Tropical Cyclones, San Juan, Costa Rica, WMO, 160–184. [Available online at http://severe.worldweather.org/iwtc/document/Topic_1_5_John_Knaff.pdf.]

  • Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, D. A. Molenar, C. R. Sampson, and M. G. Seybold, 2011: An automated, objective, multisatellite platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, doi:10.1175/2011JAMC2673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. J. Slocum, K. D. Musgrave, C. R. Sampson, and B. Strahl, 2016: Using routinely available information to estimate tropical cyclone wind structure. Mon. Wea. Rev., 144, 12331247, doi:10.1175/MWR-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunii, M., 2015: Assimilation of tropical cyclone track and wind radius data with an ensemble Kalman filter. Wea. Forecasting, 30, 10501063, doi:10.1175/WAF-D-14-00088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnan, S. G., 1998: Calculating tropical cyclone critical wind radii and storm size using NSCAT winds. M.S. thesis, Naval Postgraduate School, 55 pp. [Available online at http://calhoun.nps.edu/bitstream/handle/10945/8044/calculatingtropi00magn.pdf?sequence=1&isAllowed=y.]

  • Marchok, T. P., 2002: How the NCEP tropical cyclone tracker works. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available online at https://ams.confex.com/ams/pdfpapers/37628.pdf.]

  • Marchok, T. P., M. Morin, and M. Bender, 2012: Evaluation of a GFDL hurricane model ensemble forecast system. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Verde, FL, Amer. Meteor. Soc., 13A.3. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper206200.html.]

  • Meissner, T., F. J. Wentz, and L. Ricciardulli, 2014: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. Oceans, 119, 64996522, doi:10.1002/2014JC009837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NHC, 2016, Introduction to storm surge. National Hurricane Center/Storm Surge Unit, 5 pp. [Available online at http://www.nhc.noaa.gov/surge/surge_intro.pdf.]

  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, doi:10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S., A. Schumacher, and S. Guikema, 2014: Incorporating hurricane forecast uncertainty into decision support applications. Bull. Amer. Meteor. Soc., 95, 4758, doi:10.1175/BAMS-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, Y. Quilfen, S. Guimbard, and J. F. Piolle, 2016: A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclone: The 5 year SMOS-storm database. Remote Sens. Environ., 180, 274291, doi:10.1016/j.rse.2016.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, doi:10.1175/BAMS-D-14-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and J. Knaff, 2015: A consensus forecast for tropical cyclone gale wind radii. Wea. Forecasting, 30, 13971403, doi:10.1175/WAF-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304312, doi:10.1175/2007WAF2007028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., P. A. Wittmann, and H. L. Tolman, 2010: Consistent tropical cyclone wind and wave forecasts for the U.S. Navy. Wea. Forecasting, 25, 12931306, doi:10.1175/2010WAF2222376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and Coauthors, 2012: Objective guidance for use in setting tropical cyclone conditions of readiness. Wea. Forecasting, 27, 10521060, doi:10.1175/WAF-D-12-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Student, 1908: The probable error of a mean. Biometrika. 6, 125, doi:10.2307/2331554.

  • Tallapragada, V., and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation, August 2015 – HWRF v3.7a. NCAR Developmental Testbed Center, Boulder, CO, 123 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.]

  • Torn, R., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., R. Knutti, M. A. Liniger, and C. Appenzeller, 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 41754191, doi:10.1175/2010JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 38063822, doi:10.1175/2010JAS3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., W. Tian, Q. Liu, J. Cao, and J. A. Knaff, 2015: Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific. J. Climate, 28, 95019506, doi:10.1175/JCLI-D-15-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1888 510 36
PDF Downloads 1032 251 13