Numerical Simulations of a Tornadic Supercell over the Mediterranean

Mario Marcello Miglietta ISAC-CNR, Lecce, Italy

Search for other papers by Mario Marcello Miglietta in
Current site
Google Scholar
PubMed
Close
,
Jordi Mazon Department of Physics, Universitat Politecnica de Catalunya–BarcelonaTech, Barcelona, Spain

Search for other papers by Jordi Mazon in
Current site
Google Scholar
PubMed
Close
, and
Richard Rotunno National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 28 November 2012, a multivortex EF3 tornado occurred in southeastern Italy causing one fatality and estimated damage of 60 million euros. At approximately 1050 LT (0950 UTC), this tornado, which initially formed in association with a supercell thunderstorm over the Ionian Sea, moved inland. The environment where the tornadic supercell developed was characterized by large vertical wind shear in the lowest 1 km of the atmosphere and moderate conditional instability. Mesoscale-model numerical simulations show that it is possible to produce a simulated supercell thunderstorm with a track, change in intensity, and evolution similar to the actual one that spawned the tornado in Taranto, southern Italy. The genesis of the simulated supercell is due to a combination of mesoscale meteorological features: warm low-level air advected toward the Ionian Sea, combined with midlevel cooling due to an approaching trough, increased the potential instability; the intense vertical shear favored the possibility of supercell development; and boundary layer rolls over the Ionian Sea moved in phase with the cells produced by the orography of Calabria to supply ascent, moisture, and heat to the convection. An unusual feature of the present case is the central role of the orography, which was verified in a sensitivity experiment where it was reduced by 80%.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mario Marcello Miglietta, m.miglietta@isac.cnr.it

Abstract

On 28 November 2012, a multivortex EF3 tornado occurred in southeastern Italy causing one fatality and estimated damage of 60 million euros. At approximately 1050 LT (0950 UTC), this tornado, which initially formed in association with a supercell thunderstorm over the Ionian Sea, moved inland. The environment where the tornadic supercell developed was characterized by large vertical wind shear in the lowest 1 km of the atmosphere and moderate conditional instability. Mesoscale-model numerical simulations show that it is possible to produce a simulated supercell thunderstorm with a track, change in intensity, and evolution similar to the actual one that spawned the tornado in Taranto, southern Italy. The genesis of the simulated supercell is due to a combination of mesoscale meteorological features: warm low-level air advected toward the Ionian Sea, combined with midlevel cooling due to an approaching trough, increased the potential instability; the intense vertical shear favored the possibility of supercell development; and boundary layer rolls over the Ionian Sea moved in phase with the cells produced by the orography of Calabria to supply ascent, moisture, and heat to the convection. An unusual feature of the present case is the central role of the orography, which was verified in a sensitivity experiment where it was reduced by 80%.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mario Marcello Miglietta, m.miglietta@isac.cnr.it
Save
  • Antonescu, B., D. Schultz, F. Lomas, and T. Kühne, 2016: Tornadoes in Europe: Synthesis of the observational datasets. Mon. Wea. Rev., 144, 24452480, doi:10.1175/MWR-D-15-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aran, M., J. Amaro, J. Arús, J. Bech, F. Figuerola, M. Gayà, and E. Vilaclara, 2009: Synoptic and mesoscale diagnosis of a tornado event in Castellcir, Catalonia, on 18th October 2006. Atmos. Res., 93, 147160, doi:10.1016/j.atmosres.2008.09.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ARPAV, 2015: Temporali intensi di mercoledì 8 luglio 2015 sul Veneto. Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto Rep., 11 pp. [Available online at http://www.arpa.veneto.it/temi-ambientali/meteo/riferimenti/documenti/documenti-meteo/Relazionetornadosulveneto 08_07_15.pdf/view.]

  • Bech, J., R. Pascual, T. Rigo, N. Pineda, J. M. López, J. Arús, and M. Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Nat. Hazards Earth Syst. Sci., 7, 129139, doi:10.5194/nhess-7-129-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertato, M., D. B. Giaiotti, A. Manzato, and F. Stel, 2003: An interesting case of tornado in Friuli-northeastern Italy. Atmos. Res., 67–68, 321, doi:10.1016/S0169-8095(03)00043-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922, doi:10.1175/WAF957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, doi:10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer–A review. Rev. Geophys. Space Phys., 18, 683697, doi:10.1029/RG018i003p00683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. A. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, doi:10.1175/MWR-D-13-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, G. W. Carbin, and H. E. Brooks, 2012: The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67, 8894, doi:10.1002/wea.1902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giaiotti, D. B., M. Giovannoni, A. Pucillo, and F. Stel, 2007: The climatology of tornadoes and waterspouts in Italy. Atmos. Res., 83, 534541, doi:10.1016/j.atmosres.2005.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gianfreda, F., M. M. Miglietta, and P. Sansò, 2005: Tornadoes in southern Apulia (Italy). Nat. Hazards, 34, 7189, doi:10.1007/s11069-004-1966-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, doi:10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homar, V., M. Gayà, R. Romero, C. Ramis, and S. Alonso, 2003: Tornadoes over complex terrain: An analysis of the 28th August 1999 tornadic event in eastern Spain. Atmos. Res., 67–68, 301317, doi:10.1016/S0169-8095(03)00064-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Tech. Rep. 437, 61 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/SURFACE_LAYER/eta_part4.pdf.]

  • Lilly, D. K., 1990: Numerical prediction of thunderstorm—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, doi:10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: The Mediterranean climate: An overview of the main characteristics and issues. Mediterranean Climate Variability, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Elsevier, 1–26.

    • Crossref
    • Export Citation
  • Markowski, P. M., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 424 pp.

    • Crossref
    • Export Citation
  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, doi:10.1016/j.atmosres.2010.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mateo, J., D. Ballart, C. Brucet, M. Aran, and J. Bech, 2009: A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia. Atmos. Res., 93, 131146, doi:10.1016/j.atmosres.2008.09.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsangouras, I. T., P. T. Nastos, and I. Pytharoulis, 2012: Numerical investigation of the role of topography in tornado events in Greece. Advances in Meteorology, Climatology and Atmospheric Physics, C. G. Helmis and P. T. Nastos, Eds., Springer, 209–215, doi:10.1007/978-3-642-29172-2_30.

    • Crossref
    • Export Citation
  • Matsangouras, I. T., I. Pytharoulis, and P. T. Nastos, 2014: Numerical modeling and analysis of the effect of complex Greek topography on tornadogenesis. Nat. Hazards Earth Syst. Sci., 14, 19051919, doi:10.5194/nhess-14-1905-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsangouras, I. T., P. T. Nastos, and I. Pytharoulis, 2016: Study of the tornado event in Greece on March 25, 2009: Synoptic analysis and numerical modeling using modified topography. Atmos. Res., 169, 566583, doi:10.1016/j.atmosres.2015.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J., and K. C. Mehta, 2006: A recommendation for an enhanced Fujita scale (EF-scale), revision 2. Wind Science and Engineering Research Center Rep., Texas Tech University, 111 pp. [Available online at http://www.spc.ncep.noaa.gov/efscale/ef-ttu.pdf.]

  • Meredith, E. P., V. A. Semenov, D. Maraun, W. Park, and A. V. Chernokulsky, 2015: Crucial role of Black Sea warming in amplifying 2012 Krymsk precipitation extreme. Nat. Geosci., 8, 615620, doi:10.1038/ngeo2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a ridge. J. Atmos. Sci., 66, 18651885, doi:10.1175/2009JAS2902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2016: An EF3 multivortex tornado over the Ionian region: Is it time for a dedicated warning system over Italy? Bull. Amer. Meteor. Soc., 97, 337344, doi:10.1175/BAMS-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., A. Manzato, and R. Rotunno, 2016: Characteristics and predictability of a supercell during HyMeX SOP1. Quart. J. Roy. Meteor. Soc., 142, 28392853, doi:10.1002/qj.2872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moscatello, A., M. M. Miglietta, and R. Rotunno, 2008: Numerical analysis of a Mediterranean “hurricane” over southeastern Italy. Mon. Wea. Rev., 136, 43734397, doi:10.1175/2008MWR2512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastos, P. T., and I. T. Matsangouras, 2014: Analysis of synoptic conditions for tornadic days over western Greece. Nat. Hazards Earth Syst. Sci., 14, 24092421, doi:10.5194/nhess-14-2409-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, R. E., 1998: A historical review of tornadoes in Italy. J. Wind Eng. Ind. Aerodyn., 74–76, 123130, doi:10.1016/S0167-6105(98)00010-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing Ensemble Prediction System. Wea. Forecasting, 30, 16451654, doi:10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

    • Crossref
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, F. E. L. Otto, P. A. Stott, N. Christidis, G. J. Van Oldenborgh, and N. Schaller, 2016: Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett., 11, 114009, doi:10.1088/1748-9326/11/11/114009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venerito, M., P. Fago, C. Colella, R. Laviano, F. Montanaro, P. Sansò, and G. Mastronuzzi, 2013: Il tornado di Taranto del 28 novembre 2012: percorso, orografia e vulnerabilità. Geologia dell’Ambiente, No. 4/2013, Società Italiana di Geologia Ambientale, Rome, Italy, 2–9. [Available online at http://www.sigeaweb.it/documenti/gda/gda-4-2013.pdf.]

  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 600 119 13
PDF Downloads 442 74 8