Evaluation of Multiple Planetary Boundary Layer Parameterization Schemes in Southeast U.S. Cold Season Severe Thunderstorm Environments

Ariel E. Cohen School of Meteorology, University of Oklahoma, and NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Ariel E. Cohen in
Current site
Google Scholar
PubMed
Close
,
Steven M. Cavallo School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Steven M. Cavallo in
Current site
Google Scholar
PubMed
Close
,
Michael C. Coniglio NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael C. Coniglio in
Current site
Google Scholar
PubMed
Close
,
Harold E. Brooks NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Harold E. Brooks in
Current site
Google Scholar
PubMed
Close
, and
Israel L. Jirak NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Israel L. Jirak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Southeast U.S. cold season severe weather events can be difficult to predict because of the marginality of the supporting thermodynamic instability in this regime. The sensitivity of this environment to prognoses of instability encourages additional research on ways in which mesoscale models represent turbulent processes within the lower atmosphere that directly influence thermodynamic profiles and forecasts of instability. This work summarizes characteristics of the southeast U.S. cold season severe weather environment and planetary boundary layer (PBL) parameterization schemes used in mesoscale modeling and proceeds with a focused investigation of the performance of nine different representations of the PBL in this environment by comparing simulated thermodynamic and kinematic profiles to observationally influenced ones. It is demonstrated that simultaneous representation of both nonlocal and local mixing in the Asymmetric Convective Model, version 2 (ACM2), scheme has the lowest overall errors for the southeast U.S. cold season tornado regime. For storm-relative helicity, strictly nonlocal schemes provide the largest overall differences from observationally influenced datasets (underforecast). Meanwhile, strictly local schemes yield the most extreme differences from these observationally influenced datasets (underforecast) in a mean sense for the low-level lapse rate and depth of the PBL, on average. A hybrid local–nonlocal scheme is found to mitigate these mean difference extremes. These findings are traced to a tendency for local schemes to incompletely mix the PBL while nonlocal schemes overmix the PBL, whereas the hybrid schemes represent more intermediate mixing in a regime where vertical shear enhances mixing and limited instability suppresses mixing.

Current affiliation: National Weather Service, Topeka, Kansas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ariel Cohen, ariel.cohen@noaa.gov

Abstract

Southeast U.S. cold season severe weather events can be difficult to predict because of the marginality of the supporting thermodynamic instability in this regime. The sensitivity of this environment to prognoses of instability encourages additional research on ways in which mesoscale models represent turbulent processes within the lower atmosphere that directly influence thermodynamic profiles and forecasts of instability. This work summarizes characteristics of the southeast U.S. cold season severe weather environment and planetary boundary layer (PBL) parameterization schemes used in mesoscale modeling and proceeds with a focused investigation of the performance of nine different representations of the PBL in this environment by comparing simulated thermodynamic and kinematic profiles to observationally influenced ones. It is demonstrated that simultaneous representation of both nonlocal and local mixing in the Asymmetric Convective Model, version 2 (ACM2), scheme has the lowest overall errors for the southeast U.S. cold season tornado regime. For storm-relative helicity, strictly nonlocal schemes provide the largest overall differences from observationally influenced datasets (underforecast). Meanwhile, strictly local schemes yield the most extreme differences from these observationally influenced datasets (underforecast) in a mean sense for the low-level lapse rate and depth of the PBL, on average. A hybrid local–nonlocal scheme is found to mitigate these mean difference extremes. These findings are traced to a tendency for local schemes to incompletely mix the PBL while nonlocal schemes overmix the PBL, whereas the hybrid schemes represent more intermediate mixing in a regime where vertical shear enhances mixing and limited instability suppresses mixing.

Current affiliation: National Weather Service, Topeka, Kansas.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ariel Cohen, ariel.cohen@noaa.gov
Save
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, doi:10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. 21st Conf. on Severe Local Storms/19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/pdfpapers/47482.pdf.

  • Brooks, H. E., 2009: Proximity soundings for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, doi:10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117, 23052324, doi:10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, K. W., and J. A. Frenkel, 1980: Exchange rates, money and relative prices: The dollar–pound in the 1920s. J. Int. Econ., 10, 249262, doi:10.1016/0022-1996(80)90057-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, doi:10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, doi:10.1175/WAF-D-11-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia, P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 15071519, doi:10.1175/WAF-D-11-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, P. Grunmann, E. Rodgers, G. Gayno, and V. Koren, 2003: Implementation of the upgraded Noah land surface model in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Güldner, J., and D. Spänkuch, 2001: Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry. J. Atmos. Oceanic Technol., 18, 925933, doi:10.1175/1520-0426(2001)018<0925:RSOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyer, J. L., and A. R. Dean, 2010: Tornadoes within weak CAPE environments across the continental United States. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 1.5, https://ams.confex.com/ams/25SLS/techprogram/paper_175725.htm.

  • Guyer, J. L., D. A. Imy, A. Kis, and K. Venable, 2006: Cool season significant (F2–F5) tornadoes in the Gulf Coast states. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/23SLS/techprogram/paper_115320.htm.

  • Hacker, J. P., 2010: Spatial and temporal scales of boundary layer wind predictability in response to small-amplitude land surface uncertainty. J. Atmos. Sci., 67, 217233, doi:10.1175/2009JAS3162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Holtslag, A. A. M., E. I. F. De Bruijn, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus Jr., M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, doi:10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., M. E. Baldwin, P. R. Janish, S. J. Weiss, M. P. Kay, and G. W. Carbin, 2003: Subjective verification of numerical models as a component of a broader interaction between research and operations. Wea. Forecasting, 18, 847860, doi:10.1175/1520-0434(2003)018<0847:SVONMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, M. E. Baldwin, G. W. Carbin, D. A. Bright, J. J. Levit, and J. A. Hart, 2005: Evaluating high-resolution configurations of the WRF Model that are used to forecast severe convective weather: The 2005 SPC/NSSL Spring Program. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 2A.5, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94843.htm.

  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. R., M. D. Parker, K. D. Sherburn, and G. M. Lackmann, 2017: Rapid evolution of cool season, low-CAPE severe thunderstorm environments. Wea. Forecasting, 32, 763779, doi:10.1175/WAF-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, doi:10.1175/2009WAF2222294.1.

  • Massey, F. J., 1951: The Kolmogorov–Smirnov test for goodness of fit. J. Amer. Stat. Assoc., 46, 6877, doi:10.1080/01621459.1951.10500769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCAR, 2017: Image archive: Meteorological case study selection kit. National Center for Atmospheric Research/Mesoscale and Microscale Meteorology Laboratory, http://www2.mmm.ucar.edu/imagearchive/.

  • Nielsen-Gammon, J. W., X.-M. Hu, F. Zhang, and J. E. Pleim, 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417, doi:10.1175/2010MWR3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCDC, 2014a: Model data. NOAA/National Operational Model Archive and Distribution System, http://nomads.ncdc.noaa.gov/data.php?name5inventory.

  • NOAA/NCDC, 2014b: RUC online archive. NOAA/National Operational Model Archive and Distribution System, http://nomads.ncdc.noaa.gov/data/ruc/.

  • NOAA/NCEP, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 31 December 2015, https://doi.org/10.5065/D6M043C6.

    • Crossref
    • Export Citation
  • Pindyck, R. S., and D. L. Rubinfeld, 1981: Econometric Models and Economic Forecasts. 2nd ed. McGraw-Hill, 630 pp.

  • Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, doi:10.1175/JAM2534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1, 164189, doi:10.1175/1520-0434(1986)001<0164:STFAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, doi:10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

    • Crossref
    • Export Citation
  • Storm Prediction Center, 2015: SPC National Severe Weather database browser: Online SeverePlot 3.0. NOAA/NWS/Storm Prediction Center, http://www.spc.noaa.gov/climo/online/sp3/plot.php.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

    • Crossref
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theil, H., 1961: Economic Forecasts and Policy. 2nd ed. North-Holland, 567 pp.

  • Theil, H., 1966: Applied Economic Forecasting. North-Holland, 474 pp.

  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, doi:10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, doi:10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trnka, M., J. Eitzinger, G. Gruszczynski, K. Buchgraber, R. Resch, and A. Schaumberger, 2006: A simple statistical model for predicting herbage production from permanent grassland. Grass Forage Sci., 61, 253271, doi:10.1111/j.1365-2494.2006.00530.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1377 675 8
PDF Downloads 572 83 9