Using the Second-Generation GEFS Reforecasts to Predict Ceiling, Visibility, and Aviation Flight Category

Kathryn L. Verlinden Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

Search for other papers by Kathryn L. Verlinden in
Current site
Google Scholar
PubMed
Close
and
David R. Bright NOAA/National Weather Service, Portland, Oregon

Search for other papers by David R. Bright in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study is an aviation-based application of NOAA’s second-generation medium-range Global Ensemble Forecast System Reforecast (GEFS/R; i.e., hindcast or retrospective forecast) dataset. The study produced a downscaled probabilistic prediction of instrument flight conditions at major U.S. airports using an analog approach. This represents an initial step toward applications of reforecast data to probabilistic aviation decision support services. Results from this study show that even at the very coarse resolution of the GEFS/R dataset, the analog approach yielded skillful probabilistic forecasts of flight conditions (i.e., instrument flight rules vs visual flight rules) at most of the Federal Aviation Administration (FAA)’s Core 30 airports. This was particularly true over the central and eastern United States, including the important Golden Triangle, where aircraft flow affects traffic flow management across the entire national airspace system. Additionally, the results suggest that reforecast systems utilizing better horizontal and vertical resolution, in both the modeling system and the reforecast archive, would be very useful for aviation forecasting applications.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kathryn L. Verlinden, kverlinden@coas.oregonstate.edu

Abstract

This study is an aviation-based application of NOAA’s second-generation medium-range Global Ensemble Forecast System Reforecast (GEFS/R; i.e., hindcast or retrospective forecast) dataset. The study produced a downscaled probabilistic prediction of instrument flight conditions at major U.S. airports using an analog approach. This represents an initial step toward applications of reforecast data to probabilistic aviation decision support services. Results from this study show that even at the very coarse resolution of the GEFS/R dataset, the analog approach yielded skillful probabilistic forecasts of flight conditions (i.e., instrument flight rules vs visual flight rules) at most of the Federal Aviation Administration (FAA)’s Core 30 airports. This was particularly true over the central and eastern United States, including the important Golden Triangle, where aircraft flow affects traffic flow management across the entire national airspace system. Additionally, the results suggest that reforecast systems utilizing better horizontal and vertical resolution, in both the modeling system and the reforecast archive, would be very useful for aviation forecasting applications.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kathryn L. Verlinden, kverlinden@coas.oregonstate.edu
Save
  • Baker, S. P., D. F. Shanahan, W. Haaland, J. E. Brady, and G. Li, 2011: Helicopter crashes related to oil and gas operations in the Gulf of Mexico. Aviat. Space Environ. Med., 82, 885889, doi:10.3357/ASEM.3050.2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., T. M. Hamill, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 26082619, doi:10.1175/2007MWR2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble re-forecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, doi:10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galameau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015: Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon. Wea. Rev., 143, 33003309, doi:10.1175/MWR-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., and R. S. Schumacher, 2016: Using reforecasts to improve forecasting of fog and visibility for aviation. Wea. Forecasting, 31, 467482, doi:10.1175/WAF-D-15-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keith, R., and S. M. Leyton, 2007: An experiment to measure the value of statistical probability forecasts for airports. Wea. Forecasting, 22, 928935, doi:10.1175/WAF988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorentson, M., 2013: Scale normalization for IFR-frequency effects in aviation forecast performance statistics. J. Oper. Meteor., 1, 275281, doi:10.15191/nwajom.2013.0122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • NOAA, 1998: Automated Surface Observing System (ASOS) user’s guide. 74 pp., http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf.

  • NTSB, 2014: General aviation: Identify and communicate hazardous weather. NTSB most wanted list, https://www.ntsb.gov/safety/mwl/Pages/mwl7_2014.aspx.

  • NWS, 2016: Terminal aerodome forecasts. National Weather Service Instruction 10-813, NWSPD 10-8, 39 pp., http://www.nws.noaa.gov/directives/.

  • Reynolds, D. W., D. A. Clark, F. W. Wilson, and L. Cook, 2012: Forecast-based decision support for San Francisco International Airport: A NextGen prototype system that improves operations during summer stratus season. Bull. Amer. Meteor. Soc., 93, 15031518, doi:10.1175/BAMS-D-11-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanski, H., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification methods in meteorology. Atmospheric Environmental Service Research Rep. MSRB 89-5, WWW Tech. Rep. 8, WMO/TD-358, 114 pp.

  • Toth, Z., 1989: Long-range weather forecasting using an analog approach. J. Climate, 2, 594607, doi:10.1175/1520-0442(1989)002<0594:LRWFUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 1989: A new look at weather forecasting through analogues. Mon. Wea. Rev., 117, 22302247, doi:10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, doi:10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., and Coauthors, 2000: A case study of the sensitivity of the Eta Data Assimilation System. Wea. Forecasting, 15, 603621, doi:10.1175/1520-0434(2000)015<0603:ACSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1217 848 32
PDF Downloads 326 77 6