Nowcast Guidance of Afternoon Convection Initiation for Taiwan

Hui-Ling Chang Research and Development Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Hui-Ling Chang in
Current site
Google Scholar
PubMed
Close
,
Barbara G. Brown National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Barbara G. Brown in
Current site
Google Scholar
PubMed
Close
,
Pao-Shin Chu Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pao-Shin Chu in
Current site
Google Scholar
PubMed
Close
,
Yu-Chieng Liou Department of Atmospheric Sciences, National Central University, Jhong-Li, Taiwan

Search for other papers by Yu-Chieng Liou in
Current site
Google Scholar
PubMed
Close
, and
Wen-Ho Wang Meteorological Satellite Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Wen-Ho Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Focusing on afternoon thunderstorms in Taiwan during the warm season (May–October) under weak synoptic forcing, this study applied the Taiwan Auto-NowCaster (TANC) to produce 1-h likelihood nowcasts of afternoon convection initiation (ACI) using a fuzzy logic approach. The primary objective is to design more useful forecast products with uncertainty regions of predicted thunderstorms to provide nowcast guidance of ACI for forecasters. Four sensitivity tests on forecast performance were conducted to improve the usefulness of nowcasts for forecasters. The optimal likelihood threshold (Lt) for ACIs, which is the likelihood value that best corresponds to the observed ACIs, was determined to be 0.6. Because of the high uncertainty on the exact location or timing of ACIs in nowcasts, location displacement and temporal shifting of ACIs should be considered in operational applications. When a spatial window of 5 km and a temporal window of 18 min are applied, the TANC displays moderate accuracy and satisfactory discrimination with an acceptable degree of overforecasting. The nonparametric Mann–Whitney test indicated that the performance of the TANC substantially surpasses the competing Space and Time Multiscale Analysis System–Weather Research and Forecasting Model, which serves as a pertinent reference for short-range (0–6 h) forecasts at the Central Weather Bureau in Taiwan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pao-Shin Chu, chu@hawaii.edu

Abstract

Focusing on afternoon thunderstorms in Taiwan during the warm season (May–October) under weak synoptic forcing, this study applied the Taiwan Auto-NowCaster (TANC) to produce 1-h likelihood nowcasts of afternoon convection initiation (ACI) using a fuzzy logic approach. The primary objective is to design more useful forecast products with uncertainty regions of predicted thunderstorms to provide nowcast guidance of ACI for forecasters. Four sensitivity tests on forecast performance were conducted to improve the usefulness of nowcasts for forecasters. The optimal likelihood threshold (Lt) for ACIs, which is the likelihood value that best corresponds to the observed ACIs, was determined to be 0.6. Because of the high uncertainty on the exact location or timing of ACIs in nowcasts, location displacement and temporal shifting of ACIs should be considered in operational applications. When a spatial window of 5 km and a temporal window of 18 min are applied, the TANC displays moderate accuracy and satisfactory discrimination with an acceptable degree of overforecasting. The nonparametric Mann–Whitney test indicated that the performance of the TANC substantially surpasses the competing Space and Time Multiscale Analysis System–Weather Research and Forecasting Model, which serves as a pertinent reference for short-range (0–6 h) forecasts at the Central Weather Bureau in Taiwan.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pao-Shin Chu, chu@hawaii.edu
Save
  • Barron, J., D. Fleet, and S. Beauchemin, 1994: Performance of optical flow techniques. Int. J. Comput. Vis., 12, 4377, doi:10.1007/BF01420984.

  • Benjamin, S., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., D. Sempere-Torres, C. Corral, and R. Sánchez-Diezma, 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J. Atmos. Oceanic Technol., 23, 11571180, doi:10.1175/JTECH1914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bermowitz, R. J., and E. A. Zurndorfer, 1979: Automated guidance for predicting quantitative precipitation. Mon. Wea. Rev., 107, 122128, doi:10.1175/1520-0493(1979)107<0122:AGFPQP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H. L., 1997: The study on the afternoon convection in Taiwan area. M.S. thesis, Dept. of Atmospheric Sciences, National Central University, Zhongli, Taiwan, 200 pp.

  • Chang, H. L., H. Yuan, and P. L. Lin, 2012: Short-range (0–12h) PQPFs from time-lagged multimodel ensembles using LAPS. Mon. Wea. Rev., 140, 14961516, doi:10.1175/MWR-D-11-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H. L., S.-C. Yang, H. Yuan, P. L. Lin, and Y. C. Liou, 2015: Analysis of relative operating characteristic and economic value using the LAPS ensemble prediction system in Taiwan area. Mon. Wea. Rev., 143, 18331848, doi:10.1175/MWR-D-14-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., H. C. Chou, T. C. Chang, and C. S. Liu, 2001: Frontal and non-frontal convection over northern Taiwan in mei-yu season (in Chinese with English abstract). Atmos. Sci., 29, 3752.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2002: Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate, 15, 26782689, doi:10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., R. M. Dyer, and M. J. Krauss, 1975: An objective evaluator of techniques for predicting severe weather events. Preprints, Ninth Conf. on Severe Local Storms, Norman, OK, Amer. Meteor. Soc., 321326.

  • Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, doi:10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flueck, J. A., 1987: A study of some measures of forecast verification. Preprints, 10th Conf. on Probability and Statistics in Atmospheric Sciences, Edmonton, AB, Canada, Amer. Meteor. Soc., 6973.

  • Gandin, L. S., and A. H. Murphy, 1992: Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361370, doi:10.1175/1520-0493(1992)120<0361:ESSFCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, G. K., 1884: Finley’s tornado predictions. Amer. Meteor. J., 1, 166172.

  • Hanssen, A. W., and W. J. A. Kuipers, 1965: On the relationship between the frequency of rain and various meteorological parameters. Meded. Verh., 81, 215.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., H. H. Schiesser, W. Schmid, and A. Waldvogel, 1997: Comparison of traditional and newly developed thunderstorm indices for Switzerland. Wea. Forecasting, 12, 108125, doi:10.1175/1520-0434(1997)012<0108:COTAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and J. F. Bresch, 1991: Diagnosed characteristics of precipitation systems over Taiwan during the May–June 1987 TAMEX. Mon. Wea. Rev., 119, 25402557, doi:10.1175/1520-0493(1991)119<2540:DCOPSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley and Sons, 274 pp.

    • Search Google Scholar
    • Export Citation
  • Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. Terr. Atmos. Oceanic Sci., 5, 169197, doi:10.3319/TAO.1994.5.2.169(TAMEX).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., J. Crockett, K. Sperow, M. Ba, and L. Xin, 2012: Tuning AutoNowcaster automatically. Wea. Forecasting, 27, 15681579, doi:10.1175/WAF-D-11-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, H. J., 1982: Introduction to Probability Theory and Statistical Inference. 3rd ed. John Wiley and Sons, 638 pp.

  • Lin, P. F., P. L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26, 4460, doi:10.1175/2010WAF2222386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P. F., P. L. Chang, B. J.-D. Jou, J. W. Wilson and R. D. Roberts, 2012: Objective prediction of warm season afternoon thunderstorms in northern Taiwan using a fuzzy logic approach. Wea. Forecasting, 27, 11781197, doi:10.1175/WAF-D-11-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S. M., and H. C. Kuo, 1996: A study of summertime afternoon convection in southern Taiwan during 1994 (in Chinese with English abstract). Atmos. Sci., 24, 249280.

    • Search Google Scholar
    • Export Citation
  • Lu, C., H. Yuan, B. Schwartz, and S. Benjamin, 2007: Short-range forecast using time-lagged ensembles. Wea. Forecasting, 22, 580595, doi:10.1175/WAF999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric test against trends. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Mazur, R. J., J. F. Weaver, and T. H. Vonder Haar, 2009: A preliminary statistical study of correlations between inflow feeder clouds, supercell or multicell thunderstorms, and severe weather. Wea. Forecasting, 24, 921934, doi:10.1175/2009WAF2222149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, doi:10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., and J. W. Wilson, 1989: Evaluation of the TDWR nowcasting experiment. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 224–227.

  • Mueller, C. K., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and H. Yee, 2003: NCAR Auto-Nowcast system. Wea. Forecasting, 18, 545561, doi:10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and H. Daan, 1985: Forecast evaluation. Probability, Statistics, and Decision Making in the Atmospheric Sciences, A. H. Murphy and R.W. Katz, Eds., Westview Press, 379–437.

  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., A. R. Anderson, E. Nelson, B. G. Brown, J. W. Wilson, M. Pocernich, and T. Saxen, 2012: Impacts of forecaster involvement on convective storm initiation and evolution nowcasting. Wea. Forecasting, 27, 10611089, doi:10.1175/WAF-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, doi:10.1175/2008WAF2222159.1.

  • Saxen, T. R., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part IV: The White Sands Missile Range Auto-Nowcast system. J. Appl. Meteor. Climatol., 47, 11231139, doi:10.1175/2007JAMC1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and R. A. Maddox, 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189204, doi:10.1175/1520-0434(1988)003<0189:OMCACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., C. K. Mueller, J. W. Wilson, and E. J. Zipser, 1985: Development of convection and severe weather along outflow boundaries in northeast Colorado: Diagnosing the above-surface environment with a mobile sounding system. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 386–389.

  • Trier, S. B., M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325, doi:10.1175/2010WAF2222426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10-day forecast. Wea. Forecasting, 9, 457465, doi:10.1175/1520-0434(1994)009<0457:OTWFAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms by radar-observed boundary layer convergent lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, doi:10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099, doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., E. E. Ebert, T. R. Saxen, R. D. Roberts, C. K. Mueller, M. Sleigh, C. E. Pierce, and A. Seed, 2004: Sydney 2000 Forecast Demonstration Project: Convective storm nowcasting. Wea. Forecasting, 19, 131150, doi:10.1175/1520-0434(2004)019<0131:SFDPCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodcock, F., 1976: The evaluation of yes/no forecasts for scientific and administrative purposes. Mon. Wea. Rev., 104, 12091214, doi:10.1175/1520-0493(1976)104<1209:TEOYFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y., S. Koch, J. McGinley, S. Albers, P. E. Bieringer, M. Wolfson, and M. Chan, 2011: A space–time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 12241240, doi:10.1175/2010MWR3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1499 1058 49
PDF Downloads 455 84 12