Performance of the New NCEP Global Ensemble Forecast System in a Parallel Experiment

Xiaqiong Zhou I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Xiaqiong Zhou in
Current site
Google Scholar
PubMed
Close
,
Yuejian Zhu NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
,
Dingchen Hou NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Dingchen Hou in
Current site
Google Scholar
PubMed
Close
,
Yan Luo I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yan Luo in
Current site
Google Scholar
PubMed
Close
,
Jiayi Peng I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Jiayi Peng in
Current site
Google Scholar
PubMed
Close
, and
Richard Wobus I. M. Systems Group, NOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Richard Wobus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new version of the Global Ensemble Forecast System (GEFS, v11) is tested and compared with the operational version (v10) in a 2-yr parallel run. The breeding-based scheme with ensemble transformation and rescaling (ETR) used in the operational GEFS is replaced by the ensemble Kalman filter (EnKF) to generate initial ensemble perturbations. The global medium-range forecast model and the Global Forecast System (GFS) analysis used as the initial conditions are upgraded to the GFS 2015 implementation version. The horizontal resolution of GEFS increases from Eulerian T254 (~52 km) for the first 8 days of the forecast and T190 (~70 km) for the second 8 days to semi-Lagrangian T574 (~34 km) and T382 (~52 km), respectively. The sigma pressure hybrid vertical layers increase from 42 to 64 levels. The verification of geopotential height, temperature, and wind fields at selected levels shows that the new GEFS significantly outperforms the operational GEFS up to days 8–10 except for an increased warm bias over land in the extratropics. It is also found that the parallel system has better reliability in the short-range probability forecasts of precipitation during warm seasons, but no clear improvement in cold seasons. There is a significant degradation of TC track forecasts at days 6–7 during the 2012–14 TC seasons over the Atlantic and eastern Pacific. This degradation is most likely a sampling issue from a low number of TCs during these three TC seasons. The results for an extended verification period (2011–14) and the recent two hurricane seasons (2015 and 2016) are generally positive. The new GEFS became operational at NCEP on 2 December 2015.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaqiong Zhou, xiaqiong.zhou@noaa.gov

Abstract

A new version of the Global Ensemble Forecast System (GEFS, v11) is tested and compared with the operational version (v10) in a 2-yr parallel run. The breeding-based scheme with ensemble transformation and rescaling (ETR) used in the operational GEFS is replaced by the ensemble Kalman filter (EnKF) to generate initial ensemble perturbations. The global medium-range forecast model and the Global Forecast System (GFS) analysis used as the initial conditions are upgraded to the GFS 2015 implementation version. The horizontal resolution of GEFS increases from Eulerian T254 (~52 km) for the first 8 days of the forecast and T190 (~70 km) for the second 8 days to semi-Lagrangian T574 (~34 km) and T382 (~52 km), respectively. The sigma pressure hybrid vertical layers increase from 42 to 64 levels. The verification of geopotential height, temperature, and wind fields at selected levels shows that the new GEFS significantly outperforms the operational GEFS up to days 8–10 except for an increased warm bias over land in the extratropics. It is also found that the parallel system has better reliability in the short-range probability forecasts of precipitation during warm seasons, but no clear improvement in cold seasons. There is a significant degradation of TC track forecasts at days 6–7 during the 2012–14 TC seasons over the Atlantic and eastern Pacific. This degradation is most likely a sampling issue from a low number of TCs during these three TC seasons. The results for an extended verification period (2011–14) and the recent two hurricane seasons (2015 and 2016) are generally positive. The new GEFS became operational at NCEP on 2 December 2015.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaqiong Zhou, xiaqiong.zhou@noaa.gov
Save
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., J. Barkmeijer, T. N. Palmer, and D. S. Richardson, 2000: Current status and future development of the ECMWF Ensemble Prediction System. Meteor. Appl., 7, 163175, doi:10.1017/S1350482700001456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correction for global ensemble forecast. Wea. Forecasting, 27, 396410, doi:10.1175/WAF-D-11-00011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, https://doi.org/10.1175/WAF-D-17-0046.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameterization scheme within NCEP global ensemble forecast system. 18th Conf. on Probability and Statistics in the Atmospheric Sciences, Atlanta, GA, Amer. Meteor. Soc., 4.5, https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm.

  • Hou, D., Z. Toth, Y. Zhu, and W. Yang, 2008: Impact of a stochastic perturbation scheme on NCEP Global Ensemble Forecast System. 19th Conf. on Probability and Statistics in the Atmospheric Sciences, New Orleans, LA, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm.

  • Hou, D., and Coauthors, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of Stage IV toward CPC gauge-based analysis. J. Hydrometeor., 15, 25422557, doi:10.1175/JHM-D-11-065140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604620, doi:10.1175/MWR-2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 21262143, doi:10.1175/2008MWR2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., 2011: A multiconserving discretization with enthalpy as a thermodynamic prognostic variable in generalized hybrid vertical coordinates for the NCEP Global Forecast System. Mon. Wea. Rev., 139, 15831607, doi:10.1175/2010MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., 2014: A discretization of deep-atmospheric nonhydrostatic dynamics on generalized hybrid vertical coordinates for NCEP global spectral model. NCEP Office Note 477, 39 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on477.pdf.

  • Juang, H.-M. H., and S.-Y. Hong, 2010: Forward semi-Lagrangian advection with mass conservation and positive definiteness for falling hydrometeors. Mon. Wea. Rev., 138, 17781791, doi:10.1175/2009MWR3109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2001: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 368 pp.

    • Crossref
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009a: Improving incremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 137, 10461060, doi:10.1175/2008MWR2623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W. S. Wu, and S. Lord, 2009b: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045, doi:10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 27912801, doi:10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Marchok, H.-L. Pan, M. Bender, and S. J. Lord, 2000: Improvements in hurricane initialization and forecasting at NCEP with global and regional (GFDL) models. NOAA Tech. Procedures Bull. 472, 7 pp., http://www.nws.noaa.gov/om/tpb/472.htm.

  • Liu, Q., S. J. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T. Marchok, 2006: Hurricane relocation in global ensemble forecast system. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5.13, https://ams.confex.com/ams/pdfpapers/108503.pdf.

  • Munsell, E. B., J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang, 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 45144532, doi:10.1175/MWR-D-14-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, doi:10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1997: On parametrizing scales that are only somewhat smaller than the smallest resolved scales, with application to convection and orography. Workshop on New Insights and Approaches to Convective Parametrization, Reading, United Kingdom, ECMWF, 328337.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, doi:10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Hamrud, 1995: Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev., 123, 489514, doi:10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sela, J., 2010: The derivation of the sigma pressure hybrid coordinates semi-Lagrangian model equations for the GFS. NCEP Office Note 462, 31 pp., http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on462.pdf.

  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, doi:10.1256/qj.04.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973318, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 137–163.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., O. Talagrand, and Y. Zhu, 2006: The attributes of forecast systems. Predictability of Weather and Climate, T. N. Palmer and R. Hagedorn, Eds., Cambridge University Press, 584–595.

  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844, doi:10.1111/j.1600-0870.2006.00159.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast systems. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, doi:10.1175/MWR-D-11-00276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, doi:10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., 2015: Comparison of forecast skills between NCEP GFS four cycles and on the value of 06Z and 18Z cycles. 27th Conf. on Weather Analysis and Forecasting/23rd Conf. on Numerical Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 15A.1, https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273676.html.

  • Yang, F., H. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord, 2006: Evaluation of the NCEP Global Forecast System at the ARM SGP site. Mon. Wea. Rev., 134, 36683690, doi:10.1175/MWR3264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, F., K. Mitchell, Y. Hou, Y. Dai, X. Zeng, Z. Wang, and X. Liang, 2008: Dependence of land surface albedo on solar zenith angle: Observations and model parameterizations. J. Appl. Meteor. Climatol., 47, 29632982, doi:10.1175/2008JAMC1843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of perturbations from an ensemble transform and an ensemble Kalman filter for the NCEP Global Ensemble Forecast System. Wea. Forecasting, 31, 20572074, https://doi.org/10.1175/WAF-D-16-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci., 22, 781788, doi:10.1007/BF02918678.

  • Zhu, Y., and Z. Toth, 2008: Ensemble based probabilistic forecast verification. 19th Conf. on Probability and Statistics in the Atmospheric Sciences, New Orleans, LA, Amer. Meteor. Soc., 2.2, https://ams.confex.com/ams/88Annual/techprogram/paper_131645.htm.

  • Zhu, Y., G. Iyengar, Z. Toth, M. S. Tracton, and T. Marchok, 1996: Objective evaluation of the NCEP Global Ensemble Forecasting System. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., J79J82.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3886 1792 52
PDF Downloads 1978 301 11