An Evaluation of Radar-Based Tornado Track Estimation Products by Oklahoma Public Safety Officials

Charles M. Kuster Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
University of Oklahoma, Norman, Oklahoma

Search for other papers by Charles M. Kuster in
Current site
Google Scholar
PubMed
Close
,
Pamela L. Heinselman NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
University of Oklahoma, Norman, Oklahoma

Search for other papers by Pamela L. Heinselman in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. Snyder Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
University of Oklahoma, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
,
Katie A. Wilson Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
University of Oklahoma, Norman, Oklahoma

Search for other papers by Katie A. Wilson in
Current site
Google Scholar
PubMed
Close
,
Douglas A. Speheger NOAA/National Weather Service, Norman, Oklahoma

Search for other papers by Douglas A. Speheger in
Current site
Google Scholar
PubMed
Close
, and
James E. Hocker Oklahoma Climatological Survey, Norman, Oklahoma

Search for other papers by James E. Hocker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many public safety officials (e.g., emergency managers and first responders) use weather-radar data to inform many life-saving decisions, such as sounding outdoor warning sirens and directing storm spotters. Therefore, to include this important user group in ongoing radar applications research, a knowledge coproduction framework is used to interact with, learn from, and provide information to public safety officials. From these interactions, it became clear that radar-based products that estimate a tornado’s location, intensity, or both could be valuable to public safety officials. Therefore, a survey was conducted and a focus group formed to 1) collect feedback on several of these products currently under development, 2) identify potential decisions that could be made with these products, and 3) examine the impact of radar update time on product usefulness. An analysis of the survey and focus group responses revealed that public safety officials preferred simple interactive products provided to them using multiple communication methods. Once received, any product that could clearly communicate where a tornado may have occurred would likely help public safety officials focus search and rescue efforts in the immediate aftermath of a tornado. Additionally, public safety officials preferred products created using rapid-update data (1–2-min volumetric updates) over conventional-update data (4–5-min volumetric updates) because it provided them with more complete information.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-17-0031.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles M. Kuster, charles.kuster@noaa.gov

Abstract

Many public safety officials (e.g., emergency managers and first responders) use weather-radar data to inform many life-saving decisions, such as sounding outdoor warning sirens and directing storm spotters. Therefore, to include this important user group in ongoing radar applications research, a knowledge coproduction framework is used to interact with, learn from, and provide information to public safety officials. From these interactions, it became clear that radar-based products that estimate a tornado’s location, intensity, or both could be valuable to public safety officials. Therefore, a survey was conducted and a focus group formed to 1) collect feedback on several of these products currently under development, 2) identify potential decisions that could be made with these products, and 3) examine the impact of radar update time on product usefulness. An analysis of the survey and focus group responses revealed that public safety officials preferred simple interactive products provided to them using multiple communication methods. Once received, any product that could clearly communicate where a tornado may have occurred would likely help public safety officials focus search and rescue efforts in the immediate aftermath of a tornado. Additionally, public safety officials preferred products created using rapid-update data (1–2-min volumetric updates) over conventional-update data (4–5-min volumetric updates) because it provided them with more complete information.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WAF-D-17-0031.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charles M. Kuster, charles.kuster@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 551.78 KB)
Save
  • Baumgart, L. A., E. J. Bass, B. Philips, and K. Kloesel, 2008: Emergency management decision making during severe weather. Wea. Forecasting, 23, 12681279, doi:10.1175/2008WAF2007092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biernacki, P., and D. Waldorf, 1981: Snowball sampling. Sociol. Methods Res., 10, 141163, doi:10.1177/004912418101000205.

  • Biggs, S. D., 1989: Resource-poor farmer participation in research: A synthesis of experiences from nine national agricultural research systems. OFCOR Comparative Study Paper 3, International Service for National Agricultural Research, 37 pp., http://ebrary.ifpri.org/cdm/ref/collection/p15738coll11/id/92.

  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, doi:10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowden, K. A., P. L. Heinselman, D. M. Kingfield, and R. P. Thomas, 2015: Impacts of phased-array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389404, doi:10.1175/WAF-D-14-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2012: The tornado vortex signature: An update. Wea. Forecasting, 27, 525530, doi:10.1175/WAF-D-11-00111.1.

  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, doi:10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, and D. Sirmans, 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, doi:10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., R. J. Donaldson Jr., and P. R. Desrochers, 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

    • Crossref
    • Export Citation
  • Burgess, D. W., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, doi:10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., S. D. Smith, J. N. Chrisman, R. E. Saffle, R. W. Hall, and R. J. Vogt, 2013: WSR-88D radar projects—Update 2013. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 8.1, https://ams.confex.com/ams/93Annual/webprogram/Paper221461.html.

  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, doi:10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsyth, D. E., and Coauthors, 2005: The National Radar Testbed (Phased-Array). 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 5.21, http://ams.confex.com/ams/pdfpapers/30559.pdf.

  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Radar Testbed Phased-Array Radar. J. Appl. Meteor. Climatol., 50, 579593, doi:10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044, doi:10.1175/WAF-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, doi:10.1175/WAF-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jasanoff, S., and B. Wynne, 1998: Science and decisionmaking. Human Choice and Climate Change, S. Raymer and E. L. Malone, Eds., Battelle Press, 1–87.

  • Karstens, C. D., and Coauthors, 2015: Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30, 15511570, doi:10.1175/WAF-D-14-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., and Coauthors, 2016: Evaluation of near real-time preliminary tornado damage paths. J. Oper. Meteor., 4, 132141, doi:10.15191/nwajom.2016.0410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Wea. Forecasting, 30, 11251139, doi:10.1175/WAF-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, D. S., S. Ernst, C. D. Karstens, J. Correia Jr., J. E. Hocker, and J. P. Wolfe, 2016: Co-creating the form and function of the prototype probabilistic hazard information (PHI) to meet emergency manager user needs. 11th Symp. on Societal Applications, New Orleans, LA, Amer. Meteor. Soc., 7.4, https://ams.confex.com/ams/96Annual/webprogram/Paper280331.html.

  • LaDue, J. G., K. L. Ortega, B. R. Smith, G. J. Stumpf, and D. M. Kingfield, 2012: A comparison of high resolution tornado surveys to Doppler radar observed mesocyclone parameters: 2011–2012 case studies. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 6.3, https://ams.confex.com/ams/26SLS/webprogram/Paper212627.html.

  • League, C. E., W. Díaz, B. Philips, E. J. Bass, K. Kloesel, E. Gruntfest, and A. Gessner, 2010: Emergency manager decision-making and tornado warning communication. Meteor. Appl., 17, 163172, doi:10.1002/met.201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemos, C. M., and B. J. Morehouse, 2005: The co-production of science and policy in integrated climate assessments. Global Environ. Change, 15, 5768, doi:10.1016/j.gloenvcha.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manross, K. L., T. M. Smith, J. T. Ferree, and G. J. Stumpf, 2008: An on-demand user interface for requesting multi-radar, multi-sensor time accumulated products to support severe weather verification. 24th Conf. on Interactive Information Processing Systems, New Orleans, LA, Amer. Meteor. Soc., P2.13, https://ams.confex.com/ams/pdfpapers/134621.pdf.

  • Meadow, A. M., D. B. Ferguson, Z. Guido, A. Horangic, G. Owen, and T. Wall, 2015: Moving toward the deliberate coproduction of climate science knowledge. Wea. Climate Soc., 7, 179191, doi:10.1175/WCAS-D-14-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, doi:10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, D. A., K. C. Crawford, K. A. Kloesel, and G. Kitch, 2002: OK-FIRST: An example of successful collaboration between the meteorological and emergency response communities on 3 May 1999. Wea. Forecasting, 17, 567576, doi:10.1175/1520-0434(2002)017<0567:OFAEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., A. V. Ryzhkov, D. S. Zrnić, and K. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piltz, S. F., and D. W. Burgess, 2009: The impacts of thunderstorm geometry and WSR-88D beam characteristics on diagnosing supercell tornadoes. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P6.18, https://ams.confex.com/ams/pdfpapers/155944.pdf.

  • ROC, 2014: MESO-SAILS (Multiple Elevation Scan Option for SAILS) initial description document. NOAA/NWS/Radar Operations Center Rep., 4 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Intial_Description_v02_Feb_2014.pdf.

  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, doi:10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, doi:10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, doi:10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speheger, D. A., and R. D. Smith, 2006: On the imprecision of radar signature locations and storm path forecasts. Natl. Wea. Dig., 30, 310.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., T. M. Smith, K. Manross, and D. L. Andra, 2008: The Experimental Warning Program 2008 Spring Experiment at the NOAA Hazardous Weather Testbed. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 8A.1, http://ams.confex.com/ams/pdfpapers/141712.pdf.

  • Toth, M., R. J. Trapp, J. Wurman, and K. A. Kosiba, 2013: Comparison of mobile-radar measurements of tornado intensity with corresponding WSR-88D measurements. Wea. Forecasting, 28, 418426, doi:10.1175/WAF-D-12-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., and S. T. Jauernic, 2014: Spatial and temporal characteristics of polarimetric tornadic debris signatures. J. Appl. Meteor. Climatol., 53, 22172231, doi:10.1175/JAMC-D-14-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J., L. C. Harkabus, J. Braun, S. Miller, R. Cox, J. Griffith, and R. J. Mazur, 2014: An overview of a demographic study of United States emergency managers. Bull. Amer. Meteor. Soc., 95, 199203, doi:10.1175/BAMS-D-12-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and Z. Khang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, doi:10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., R. A. Brown, and D. Sirmans, 2001: Technique for improving detection of WSR-88D mesocyclone signatures by increasing angular sampling. Wea. Forecasting, 16, 177184, doi:10.1175/1520-0434(2001)016<0177:TFIDOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, doi:10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, doi:10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1001 527 31
PDF Downloads 503 144 12