Investigating the Relationship between Lightning and Mesocyclonic Rotation in Supercell Thunderstorms

Sarah M. Stough Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Sarah M. Stough in
Current site
Google Scholar
PubMed
Close
,
Lawrence D. Carey Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Schultz NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Christopher J. Schultz in
Current site
Google Scholar
PubMed
Close
, and
Phillip M. Bitzer Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Phillip M. Bitzer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Relationships between lightning and lightning jumps and physical updraft properties are frequently observed and generally understood. However, a more intensive characterization of how lightning relates to traditional radar-based metrics of storm intensity may provide further operational utility. This study addresses the supercell storm mode because of the intrinsic relationship between a supercell’s characteristic rotating updraft–downdraft couplet, or mesocyclone, and its prolific ability to produce severe weather. Lightning and radar measurements of a diverse sample of 19 supercell thunderstorms were used to assess the conceptual model that lightning and the mesocyclone may be linked by the updraft’s role in the formation and enhancement of each. Analysis of early stages of supercell development showed that the initial lightning jump occurred prior to the time of mesocyclogenesis inferred from three methods by median values of 5–10 min. Comparison between lightning jumps and subsequent increases in mesocyclonic rotation indicated that lightning can also be used to infer or confirm imminent strengthening or reintensification of the mesocyclone. Stronger relationships emerged in supercells that exhibited more robust updrafts, in which 85% of lightning jumps were associated with at least one increase in rotation and 77% of observed increases in rotation were temporally associated with a lightning jump. Preliminary results from analysis of the relationship between lightning jumps and intensification of the low-level mesocyclone in tornadic supercells also offer motivation for the future analysis of lightning data with respect to downdraft-related processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Stough, sarah.stough@nsstc.uah.edu

Abstract

Relationships between lightning and lightning jumps and physical updraft properties are frequently observed and generally understood. However, a more intensive characterization of how lightning relates to traditional radar-based metrics of storm intensity may provide further operational utility. This study addresses the supercell storm mode because of the intrinsic relationship between a supercell’s characteristic rotating updraft–downdraft couplet, or mesocyclone, and its prolific ability to produce severe weather. Lightning and radar measurements of a diverse sample of 19 supercell thunderstorms were used to assess the conceptual model that lightning and the mesocyclone may be linked by the updraft’s role in the formation and enhancement of each. Analysis of early stages of supercell development showed that the initial lightning jump occurred prior to the time of mesocyclogenesis inferred from three methods by median values of 5–10 min. Comparison between lightning jumps and subsequent increases in mesocyclonic rotation indicated that lightning can also be used to infer or confirm imminent strengthening or reintensification of the mesocyclone. Stronger relationships emerged in supercells that exhibited more robust updrafts, in which 85% of lightning jumps were associated with at least one increase in rotation and 77% of observed increases in rotation were temporally associated with a lightning jump. Preliminary results from analysis of the relationship between lightning jumps and intensification of the low-level mesocyclone in tornadic supercells also offer motivation for the future analysis of lightning data with respect to downdraft-related processes.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Stough, sarah.stough@nsstc.uah.edu
Save
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., S. Heckman, and S. J. Goodman, 2001: A diagnostic analysis of the Kennedy Space Center LDAR network, 1: Data characteristics. J. Geophys. Res., 106, 47694786, https://doi.org/10.1029/2000JD900687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 22532269, https://doi.org/10.1175/1520-0493(1984)112<2253:VVGAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2010: Tornadoes without NWS warnings. Wea. Forecasting, 25, 159172, https://doi.org/10.1175/2009WAF2222270.1.

  • Brotzge, J., and W. Donner, 2013: The tornado warning process: A review of current research, challenges, and opportunities. Bull. Amer. Meteor. Soc., 94, 17151733, https://doi.org/10.1175/BAMS-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., 2015: Forecaster use of total lightning data for short-term forecasts and warnings in the Hazardous Weather Testbed. Seventh Conf. on Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., 3.5, https://ams.confex.com/ams/95Annual/webprogram/Paper268336.html.

  • Calhoun, K. M., D. R. MacGorman, C. L. Ziegler, and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, https://doi.org/10.1175/MWR-D-12-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., G. Stano, E. Bruning, S. Rudlosky, and D. Kingfield, 2014: The Hazardous Weather Testbed: Moving total lightning data from a research tool into forecast and warning operations. 15th Int. Conf. on Atmospheric Electricity, Norman, OK, ICAE, http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/abstract_short/Calhoun_56.pdf.

  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, https://doi.org/10.1007/BF01032000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., W. A. Petersen, and S. A. Rutledge, 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831, https://doi.org/10.1175//2566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Chmielewski, V. C., and E. C. Bruning, 2016: Lightning Mapping Array flash detection performance with variable receiver thresholds. J. Geophys. Res. Atmos., 121, 86008614, doi:10.1002/2016JD025159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T., L. D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015: Exploring lightning jump characteristics. Wea. Forecasting, 30, 2337, https://doi.org/10.1175/WAF-D-14-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darden, C. B., D. J. Nadler, B. C. Carcione, R. J. Blakeslee, G. T. Stano, and D. E. Buechler, 2010: Utilizing total lightning information to diagnose convective trends. Bull. Amer. Meteor. Soc., 91, 167175, https://doi.org/10.1175/2009BAMS2808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., and J. C. Roos, 1970: Multiple tornado producing thunderstorms and their apparent cyclic variations in intensity. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 305–308.

  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Dover Publications, 562 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278, https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus Jr., 2010: Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016, https://doi.org/10.1175/2008MWR2407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, https://doi.org/10.1175/MWR-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, B. R., and Coauthors, 2015: Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. J. Geophys. Res. Atmos., 120, 65756596, doi:10.1002/2015JD023271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and S. J. Goodman, 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 322, https://doi.org/10.1175/2009JTECHA1286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, https://doi.org/10.1016/j.atmosres.2004.11.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and J. G. LaDue, 2015: The relationship between automated low-level velocity calculations from the WSR-88D and maximum tornado intensity determined from damage surveys. Wea. Forecasting, 30, 11251139, https://doi.org/10.1175/WAF-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., K. M. Calhoun, K. M. deBeurs, and G. M. Henebry, 2017: Effects of city size on thunderstorm evolution revealed through a multiradar climatology of the central United States. J. Appl. Meteor. Climatol., https://doi.org/10.1175/JAMC-D-16-0341.1, in press.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., S. Paech, and S. Goodman, 2003: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee valley region. Mon. Wea. Rev., 131, 172188, https://doi.org/10.1175/1520-0493(2003)131<0172:VICTGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., and Coauthors, 2004: North Alabama Lightning Mapping Array (LMA): VHF source retrieval algorithm and error analyses. J. Atmos. Oceanic Technol., 21, 543558, https://doi.org/10.1175/1520-0426(2004)021<0543:NALMAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., D. R. MacGorman, M. I. Biggerstaff, and P. H. Krehbiel, 2009: Lightning initiation in the anvil of supercell storms. Geophys. Res. Lett., 36, L07802, doi:10.1029/2008GL036650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, https://doi.org/10.1175/2010MWR3322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, https://doi.org/10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and K. E. Nielsen, 1991: Cloud-to-ground lightning in a tornadic storm on 8 May 1986. Mon. Wea. Rev., 119, 15571574, https://doi.org/10.1175/1520-0493(1991)119<1557:CTGLIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250, https://doi.org/10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013, https://doi.org/10.1175/2007BAMS2352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and J. M. Straka, 2000: Some observations of rotating updrafts in a low-buoyancy, highly sheared environment. Mon. Wea. Rev., 128, 449, https://doi.org/10.1175/1520-0493(2000)128<0449:SOORUI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 407 pp.

    • Crossref
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., J. Bailey, J. Hall, S. J. Goodman, R. Blakeslee, and D. E. Buechler, 2005: A flash clustering algorithm for North Alabama Lightning Mapping Array data. Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 5.3, http://ams.confex.com/ams/Annual2005/techprogram/paper_84373.htm.

  • McCaul, E. W., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, https://doi.org/10.1175/2008WAF2222152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E., and W. A. Nuss, 2013: The relationship between total cloud lightning behavior and radar derived thunderstorm structure. Wea. Forecasting, 28, 237253, https://doi.org/10.1175/WAF-D-11-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, https://doi.org/10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2001: North Alabama Lightning Mapping Array data. NASA Global Hydrology Resource Center, Huntsville, AL, accessed 29 August 2014, https://lightning.nsstc.nasa.gov/lma/nalma/data/.

  • NASA, 2006: DC LMA post-processed data availability. NASA Global Hydrology Resource Center, Huntsville, AL, accessed 28 November 2012, https://lightning.nsstc.nasa.gov/lma/dclma/datacal.pl?class=pp.

  • Newman, J., V. Lakshmanan, P. Heinselman, M. Richman, and T. Smith, 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211, https://doi.org/10.1175/WAF-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 1991: Radar data. NOAA/National Centers for Environmental Information, accessed 2 November 2014, https://doi.org/10.7289/V5W9574V.

    • Crossref
    • Export Citation
  • NOAA/NCEI, 2002: Rapid Refresh (RAP). NOAA/National Centers for Environmental Information, accessed 2013, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap.

  • NOAA/NWS Huntsville, 2017a: April 28th - 29th, 2014: Tornado event. NOAA/National Weather Service, https://www.weather.gov/hun/hunsur_2014-04-28.

  • NOAA/NWS Huntsville, 2017b: Tornado data: April 24th, 2010. NOAA/National Weather Service, https://www.weather.gov/hun/hunsur_2010-04-24_marshall_dekalb.

  • NOAA/NWS Norman, 2017: Information about the May 10, 2010 tornado outbreak in Oklahoma. NOAA/National Weather Service, http://www.crh.noaa.gov/oun/?n=events-20100510.

  • NOAA/WDTD, 2017: Azimuthal shear. NOAA/Warning Decision Training Division, https://vlab.ncep.noaa.gov/web/wdtd/-/azimuthal-she-1?selectedFolder=562123.

  • Perez, A. H., L. J. Wicker, and R. E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12, 428437, https://doi.org/10.1175/1520-0434(1997)012<0428:COCTGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, https://doi.org/10.1029/1999GL010856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 31863202, https://doi.org/10.1175/MWR-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, G. K., J. Alpert, and W. Ebisuzaki, 2006: NOMADS: A climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull. Amer. Meteor. Soc., 87, 327341, https://doi.org/10.1175/BAMS-87-3-327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, https://doi.org/10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, G. T. Stano, R. J. Blakeslee, and S. J. Goodman, 2014: Integration of the total lightning jump algorithm into current operational warning environment conceptual models. Ninth Annual Symp. on Future Operational Environmental Satellite Systems, Austin, TX, Amer. Meteor. Soc., TJ30.4, https://ams.confex.com/ams/93Annual/webprogram/Paper220687.html.

  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2015: Insight into the kinematic and microphysical processes that control lightning jumps. Wea. Forecasting, 30, 15911621, https://doi.org/10.1175/WAF-D-14-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2017: Kinematic and microphysical significance of lightning jumps versus nonjump increases in total flash rate. Wea. Forecasting, 32, 275288, https://doi.org/10.1175/WAF-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, E. V., C. J. Schultz, L. D. Carey, D. J. Cecil, and M. Bateman, 2016: Automated storm tracking and the lightning jump algorithm using GOES-R Geostationary Lightning Mapper (GLM) proxy data. J. Oper. Meteor., 4, 92107, https://doi.org/10.15191/nwajom.2016.0407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74, 189203, https://doi.org/10.1175/1520-0477(1993)074<0189:ACTGLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivatives to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6, https://ams.confex.com/ams/pdfpapers/81827.pdf.

  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stano, G. T., C. J. Schultz, L. D. Carey, D. R. MacGorman, and K. M. Calhoun, 2014: Total lightning observations and tools for the 20 May 2013 Moore, Oklahoma, tornadic supercell. Electron. J. Oper. Meteor., 2, 7188, https://doi.org/10.15191/nwajom.2014.0207.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. E. Orville, and L. D. Carey, 2007: Total lightning signatures of thunderstorm intensity over north Texas. Part I: Supercells. Mon. Wea. Rev., 135, 32813302, https://doi.org/10.1175/MWR3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stough, S. M., 2015: Exploring the relationship between lightning activity and rotation in supercell thunderstorms. M.S. thesis, Dept. of Atmospheric Science, University of Alabama in Huntsville, 272 pp.

  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, T. Hamlin, J. Harlin, and D. Shown, 2001: Observations of VHF source powers radiated by lightning. Geophys. Res. Lett., 28, 143146, https://doi.org/10.1029/2000GL011464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639, https://doi.org/10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, https://doi.org/10.1175/WAF864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., 2017: The life-cycle of hailstorms: Lightning, radar reflectivity and rotation characteristics. Atmos. Res., 193, 6072, https://doi.org/10.1016/j.atmosres.2017.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., T. Hengstebeck, and P. Groenemeijer, 2016: Mesocyclones in central Europe as seen by radar. Atmos. Res., 168, 112120, https://doi.org/10.1016/j.atmosres.2015.08.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, https://doi.org/10.1175/JAS3615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

    • Crossref
    • Export Citation
  • Williams, E. R., 2001: The electrification of severe storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 527–561.

    • Crossref
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, https://doi.org/10.1016/S0169-8095(99)00011-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6522 2574 161
PDF Downloads 1059 174 23