Forecasting Tropical Cyclone Eye Formation and Dissipation in Infrared Imagery

John A. Knaff NOAA/Center for Satellite Applications and Research, Fort Collins, Colorado

Search for other papers by John A. Knaff in
Current site
Google Scholar
PubMed
Close
and
Robert T. DeMaria Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Robert T. DeMaria in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The development of an infrared (IR; specifically near 11 μm) eye probability forecast scheme for tropical cyclones is described. The scheme was developed from an eye detection algorithm that used a linear discriminant analysis technique to determine the probability of an eye existing in any given IR image given information about the storm center, motion, and latitude. Logistic regression is used for the model development and predictors were selected from routine information about the current storm (e.g., current intensity), forecast environmental factors (e.g., wind shear, oceanic heat content), and patterns/information (e.g., convective organization, tropical cyclone size) extracted from the current IR image. Forecasts were created for 6-, 12-, 18-, 24-, and 36-h forecast leads. Forecasts were developed using eye existence probabilities from North Atlantic tropical cyclone cases (1996–2014) and a combined North Atlantic and North Pacific (i.e., Northern Hemisphere) sample. The performance of North Atlantic–based forecasts, tested using independent eastern Pacific tropical cyclone cases (1996–2014), shows that the forecasts are skillful versus persistence at 12–36 h, and skillful versus climatology at 6–36 h. Examining the reliability and calibration of those forecasts shows that calibration and reliability of the forecasts is good for 6–18 h, but forecasts become a little overconfident at longer lead times. The forecasts also appear unbiased. The small differences between the Atlantic and Northern Hemisphere formulations are discussed. Finally, and remarkably, there are indications that smaller TCs are more prone to form eye features in all of the TC areas examined.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov

Abstract

The development of an infrared (IR; specifically near 11 μm) eye probability forecast scheme for tropical cyclones is described. The scheme was developed from an eye detection algorithm that used a linear discriminant analysis technique to determine the probability of an eye existing in any given IR image given information about the storm center, motion, and latitude. Logistic regression is used for the model development and predictors were selected from routine information about the current storm (e.g., current intensity), forecast environmental factors (e.g., wind shear, oceanic heat content), and patterns/information (e.g., convective organization, tropical cyclone size) extracted from the current IR image. Forecasts were created for 6-, 12-, 18-, 24-, and 36-h forecast leads. Forecasts were developed using eye existence probabilities from North Atlantic tropical cyclone cases (1996–2014) and a combined North Atlantic and North Pacific (i.e., Northern Hemisphere) sample. The performance of North Atlantic–based forecasts, tested using independent eastern Pacific tropical cyclone cases (1996–2014), shows that the forecasts are skillful versus persistence at 12–36 h, and skillful versus climatology at 6–36 h. Examining the reliability and calibration of those forecasts shows that calibration and reliability of the forecasts is good for 6–18 h, but forecasts become a little overconfident at longer lead times. The forecasts also appear unbiased. The small differences between the Atlantic and Northern Hemisphere formulations are discussed. Finally, and remarkably, there are indications that smaller TCs are more prone to form eye features in all of the TC areas examined.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Knaff, john.knaff@noaa.gov
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/TAC.1974.1100705.

  • Bates, J. M., and C. W. J. Granger, 1969: The combination of forecasts. Oper. Res., 20, 451468, doi:10.1057/jors.1969.103.

  • Burton, A., and Coauthors, 2010: Structure and intensity change: Operational guidance. Proc. Seventh Int. Workshop on Tropical Cyclones, La Reunion, France, WMO/CAS/WWW, 1.5, https://www.wmo.int/pages/prog/arep/wwrp/tmr/otherfileformats/documents/1_5.pdf.

  • Carrasco, C., C. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, doi:10.1175/WAF-D-13-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CSIRO, 2017: Software from Alan J. Miller. Commonwealth Scientific and Industrial Research Organisation, http://wp.csiro.au/alanmiller/.

  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, doi:10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, R. T., 2016: Automated tropical cyclone eye detection using discriminant analysis. M.S. thesis, Dept. of Computer Science, Colorado State University, 63 pp., https://dspace.library.colostate.edu/bitstream/handle/10217/170410/DeMaria_colostate_0053N_13387.pdf.

  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 45 pp., http://severe.worldweather.wmo.int/TCFW/RAI_Training/Dvorak_1984.pdf.

  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the onset and completion of ET for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, doi:10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goerss, J., 2000: Tropical cyclone track forecasts using an ensemble of dynamical models. Mon. Wea. Rev., 128, 11871193, doi:10.1175/1520-0493(2000)128<1187:TCTFUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, C., and A. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, doi:10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and east Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, doi:10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimberlain, T. B., E. S. Blake, and J. P. Cangalosi, 2016: National Hurricane Center tropical cyclone report: Hurricane Patricia (EP202015). National Hurricane Center, 32 pp., http://www.nhc.noaa.gov/data/tcr/EP202015_Patricia.pdf.

  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, doi:10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, doi:10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. J. Slocum, K. D. Musgrave, C. R. Sampson, and B. R. Strahl, 2016: Using routinely available information to estimate tropical cyclone wind structure. Mon. Wea. Rev., 144, 12331247, doi:10.1175/MWR-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, doi:10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: Tropical weather disturbances—Why do so few become hurricanes? Weather, 13, 7589, doi:10.1002/j.1477-8696.1958.tb02330.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., K. J. Berry, C. W. Landsea, and W. M. Gray, 1996: Artificial skill and validation in meteorological forecasting. Wea. Forecasting, 11, 153169, doi:10.1175/1520-0434(1996)011<0153:ASAVIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: Statistical tropical intensity forecast technique development: Developmental data. NOAA/NESDIS/Regional and Mesoscale Meteorology Branch, http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp.

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NRLMRY, 2016: ATCF fixes format, 6/10/2009. Marine Meteorology Division, Naval Research Laboratory, http://www.nrlmry.navy.mil/atcf_web/docs/database/new/newfdeck.txt.

  • OAR, 2017: Announcement of federal funding opportunity: FY 2017 Joint Hurricane Testbed (JHT), Hazardous Weather Testbed. NOAA/Oceanic and Atmospheric Research, 27 pp., http://www.nhc.noaa.gov/jht/NOAA-OAR-OWAQ-2017-2005004.pdf.

  • Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287298, https://doi.org/10.1175/WAF975.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 10161038, doi:10.1175/WAF-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and J. A. Knaff, 2015: A consensus forecast for tropical cyclone gale wind radii. Wea. Forecasting, 30, 13971403, doi:10.1175/WAF-D-15-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple tropical cyclone intensity consensus. Wea. Forecasting, 23, 304312, doi:10.1175/2007WAF2007028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. J. Slocum, and R. K. Taft, 2016: Forced, balanced model of tropical cyclone intensification. J. Meteor. Soc. Japan, 94, 119135, doi:10.2151/jmsj.2016-007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L., G. Goni, and P. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2016: National Hurricane Center tropical cyclone report: Hurricane Sandra (EP222015). National Hurricane Center, 18 pp., http://www.nhc.noaa.gov/data/tcr/EP222015_Sandra.pdf.

  • Student, 1908: The probable error of a mean. Biometrika, 6, 125.

  • Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, https://doi.org/10.1175/BAMS-87-9-1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, https://doi.org/10.1175/MWR-D-11-00108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 627 pp.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, doi:10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, doi:10.1002/2015GL066697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692701, doi:10.1175/WAF-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1470 1050 48
PDF Downloads 352 68 4