How Well Can the Met Office Unified Model Forecast Tropical Cyclones in the Western North Pacific?

Chris J. Short Met Office, Exeter, Devon, United Kingdom

Search for other papers by Chris J. Short in
Current site
Google Scholar
PubMed
Close
and
Jon Petch Met Office, Exeter, Devon, United Kingdom

Search for other papers by Jon Petch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convection-permitting numerical weather prediction models are a key tool for forecasting tropical cyclone (TC) intensities, intensity changes, and precipitation. The Met Office has been routinely running a regional (4.4-km grid spacing), explicit convection version of its Unified Model (UM) over the Philippines since August 2014, driven by its operational global model. The principal aim of this study is to assess the performance of this model relative to the driving global model. By evaluating over a year’s worth of operational TC forecasts, it is shown that the Philippines regional model offers clear benefits for TC forecasting compared with the Met Office global model. In particular, it provides much improved predictions for the intensities of strong storms (category 3 and above) and can successfully capture some rapid intensification (RI) events, whereas the global model cannot predict RI at all. The spatial location of rainfall within intense TCs is also more skillfully predicted by the regional model, and the statistical distribution of rain rates is closer to that observed. Although the regional model adds value, notable biases are also identified, highlighting areas for future work to develop and improve the model.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris J. Short, christopher.short@metoffice.gov.uk

Abstract

Convection-permitting numerical weather prediction models are a key tool for forecasting tropical cyclone (TC) intensities, intensity changes, and precipitation. The Met Office has been routinely running a regional (4.4-km grid spacing), explicit convection version of its Unified Model (UM) over the Philippines since August 2014, driven by its operational global model. The principal aim of this study is to assess the performance of this model relative to the driving global model. By evaluating over a year’s worth of operational TC forecasts, it is shown that the Philippines regional model offers clear benefits for TC forecasting compared with the Met Office global model. In particular, it provides much improved predictions for the intensities of strong storms (category 3 and above) and can successfully capture some rapid intensification (RI) events, whereas the global model cannot predict RI at all. The spatial location of rainfall within intense TCs is also more skillfully predicted by the regional model, and the statistical distribution of rain rates is closer to that observed. Although the regional model adds value, notable biases are also identified, highlighting areas for future work to develop and improve the model.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris J. Short, christopher.short@metoffice.gov.uk
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Bao, J., S. Michelson, and J. Wilczak, 2002: Sensitivity of numerical simulations to parameterizations of roughness for surface heat fluxes at high winds over the sea. Mon. Wea. Rev., 130, 19261932, https://doi.org/10.1175/1520-0493(2002)130<1926:SONSTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, https://doi.org/10.1029/93JD02370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, M. K., and Coauthors, 2016: Hurricane Weather Research and Forecasting (HWRF) model: 2016 scientific documentation. Developmental Testbed Center, 95 pp., https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.8a_ScientificDoc.pdf.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air-Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., and C. J. Morcrette, 2010: Parametrization of area cloud fraction. Atmos. Sci. Lett., 11, 283289, https://doi.org/10.1002/asl.293.

  • Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014a: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., 140, 583594, https://doi.org/10.1002/qj.2140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014b: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964986, https://doi.org/10.1175/MWR-D-12-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 7199, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, https://doi.org/10.1175/BAMS-88-3-311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013a: Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J. Geophys. Res. Atmos., 118, 11 96611 978, https://doi.org/10.1002/2013JD020319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, 2013b: Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos., 118, 21842196, https://doi.org/10.1002/jgrd.50250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cinco, T. A., and Coauthors, 2016: Observed trends and impacts of tropical cyclones in the Philippines. Int. J. Climatol., 36, 46384650, https://doi.org/10.1002/joc.4659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, https://doi.org/10.1175/2010WAF2222404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722, https://doi.org/10.5194/gmd-4-701-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and Coauthors, 2014: ACCESS-TC: Vortex specification, 4DVAR initialization, verification, and structure diagnostics. Mon. Wea. Rev., 142, 12651289, https://doi.org/10.1175/MWR-D-13-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., 2014: Lateral boundary conditions for limited area models. Quart. J. Roy. Meteor. Soc., 140, 185196, https://doi.org/10.1002/qj.2127.

  • Davis, C. A., and Coauthors, 2011: High-resolution hurricane forecasts. Comput. Sci. Eng., 13, 2230, https://doi.org/10.1109/MCSE.2010.74.

  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5, 110117, https://doi.org/10.1002/asl.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2011: Real-time tropical cyclone prediction using COAMPS-TC. Adv. Geosci., 28, 1528.

  • Edwards, J. M., 2007: Oceanic latent heat fluxes: Consistency with the atmospheric hydrological and energy cycles and general circulation modeling. J. Geophys. Res., 112, D06115, https://doi.org/10.1029/2006JD007324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faustino-Eslava, D. V., C. B. Dimalanta, P. Y. Graciano, N. T. Servando, and N. A. Cruz, 2013: Geohazards, tropical cyclones and disaster risk management in the Philippines: Adaptation in a changing climate regime. J. Environ. Sci. Manage., 16, 8497.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137, 37173743, https://doi.org/10.1175/2009MWR2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, https://doi.org/10.1175/2009MWR2976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, X. Zhang, J. Bao, K. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks, K. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, https://doi.org/10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, https://doi.org/10.1175/MWR-D-12-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2014: Sensitivity of tropical cyclone simulations to parametric uncertainties in air–sea fluxes and implications for parameter estimation. Mon. Wea. Rev., 142, 22902308, https://doi.org/10.1175/MWR-D-13-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., A. Henschke, and R. F. Adler, 2009: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. Atmos. Res., 94, 373388, https://doi.org/10.1016/j.atmosres.2009.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heming, J. T., 2016: Met Office Unified Model tropical cyclone performance following major changes to the initialization scheme and a model upgrade. Wea. Forecasting, 31, 14331449, https://doi.org/10.1175/WAF-D-16-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heming, J. T., 2017: Tropical cyclone tracking and verification techniques for Met Office numerical weather prediction models. Meteor. Appl., 24, 18, https://doi.org/10.1002/met.1599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, X. Ge, and T. Li, 2011: Performance of a dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650663, https://doi.org/10.1175/WAF-D-10-05051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 40284048, https://doi.org/10.1175/MWR-D-12-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG): Algorithm Theoretical Basis Document, version 4.5. NASA, 26 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Jin, H., M. S. Peng, Y. Jin, and J. D. Doyle, 2014: An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Wea. Forecasting, 29, 252270, https://doi.org/10.1175/WAF-D-13-00054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Y., W. T. Thompson, S. Wang, and C. Liou, 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, https://doi.org/10.1175/WAF1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, https://doi.org/10.1175/WAF906.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, https://doi.org/10.1175/WAF965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary-layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manners, J., J. C. Thelen, J. Petch, P. Hill, and J. M. Edwards, 2009: Two fast radiative transfer methods to improve the temporal sampling of clouds in numerical weather prediction and climate models. Quart. J. Roy. Meteor. Soc., 135, 457468, https://doi.org/10.1002/qj.385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manners, J., S. B. Vosper, and N. Roberts, 2012: Radiative transfer over resolved topographic features for high-resolution weather prediction. Quart. J. Roy. Meteor. Soc., 138, 720733, https://doi.org/10.1002/qj.956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H. V., and Y. Chen, 2014: Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Mon. Wea. Rev., 142, 43404356, https://doi.org/10.1175/MWR-D-13-00326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506521, https://doi.org/10.1175/1520-0493(1981)109<0506:TCRCAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, https://doi.org/10.1175/MWR3120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parametrization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 14731489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., R. Lukas, M. A. Donelan, B. K. Haus, and I. Ginis, 2014: The air–sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, https://doi.org/10.1038/srep05306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015a: Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF: Real-time implementation in 2012. Wea. Forecasting, 30, 13551373, https://doi.org/10.1175/WAF-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015b: Hurricane Weather Research and Forecasting (HWRF) model: 2015 scientific documentation. Developmental Testbed Center, 113 pp., https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.

  • Tallapragada, V., and Coauthors, 2016: Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF model: Model upgrades and evaluation of real-time performance in 2013. Wea. Forecasting, 31, 877894, https://doi.org/10.1175/WAF-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, https://doi.org/10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weusthoff, T., F. Ament, and M. Arpagaus, 2010: Assessing the benefits of convection-permitting models by neighborhood verification: Examples from MAP D-PHASE. Mon. Wea. Rev., 138, 34183433, https://doi.org/10.1175/2010MWR3380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically-based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and P. J. Mason, 1993: The pressure force induced by neutral, turbulent flow over hills. Quart. J. Roy. Meteor. Soc., 119, 12331267, https://doi.org/10.1002/qj.49711951402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., M. Nakagawa, J. Ishida, and H. Sato, 2017: WGNE intercomparison of tropical cyclone forecasts by operational NWP models: A quarter century and beyond. Bull. Amer. Meteor. Soc., 98, 23372349, https://doi.org/10.1175/BAMS-D-16-0133.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2008: A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Wea. Rev., 136, 38483862, https://doi.org/10.1175/2008MWR2408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., H. Yu, P. Chen, C. Qian, and C. Yue, 2009: Verification of tropical cyclone–related satellite precipitation estimates in mainland China. J. Appl. Meteor. Climatol., 48, 22272241, https://doi.org/10.1175/2009JAMC2143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., and B. J. Shipway, 2017: ZLF (Zero Lateral Flux): A simple mass conservation method for semi-Lagrangian based limited area models. Quart. J. Roy. Meteor. Soc., 143, 25782584, https://doi.org/10.1002/qj.3108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 30323038, https://doi.org/10.1175/1520-0493(1999)127<3032:TEODHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 18531862, https://doi.org/10.1175/2010JAS3397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1243 670 35
PDF Downloads 449 41 3