Diagnosing Conditions Associated with Large Intensity Forecast Errors in the Hurricane Weather Research and Forecasting (HWRF) Model

Daniel J. Halperin Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Daniel J. Halperin in
Current site
Google Scholar
PubMed
Close
and
Ryan D. Torn Department of Atmospheric and Environmental Science, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding and forecasting tropical cyclone (TC) intensity change continues to be a paramount challenge for the research and operational communities, partly because of inherent systematic biases contained in model guidance, which can be difficult to diagnose. The purpose of this paper is to present a method to identify such systematic biases by comparing forecasts characterized by large intensity errors with analog forecasts that exhibit small intensity errors. The methodology is applied to the 2015 version of the Hurricane Weather Research and Forecasting (HWRF) Model retrospective forecasts in the North Atlantic (NATL) and eastern North Pacific (EPAC) basins during 2011–14. Forecasts with large 24-h intensity errors are defined to be in the top 15% of all cases in the distribution that underforecast intensity. These forecasts are compared to analog forecasts taken from the bottom 50% of the error distribution. Analog forecasts are identified by finding the case that has 0–24-h intensity and wind shear magnitude time series that are similar to the large intensity error forecasts. Composite differences of the large and small intensity error forecasts reveal that the EPAC large error forecasts have weaker reflectivity and vertical motion near the TC inner core from 3 h onward. Results over the NATL are less clear, with the significant differences between the large and small error forecasts occurring radially outward from the TC core. Though applied to TCs, this analog methodology could be useful for diagnosing systematic model biases in other applications.

Current affiliation: Department of Applied Aviation Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel J. Halperin, daniel.halperin@erau.edu

Abstract

Understanding and forecasting tropical cyclone (TC) intensity change continues to be a paramount challenge for the research and operational communities, partly because of inherent systematic biases contained in model guidance, which can be difficult to diagnose. The purpose of this paper is to present a method to identify such systematic biases by comparing forecasts characterized by large intensity errors with analog forecasts that exhibit small intensity errors. The methodology is applied to the 2015 version of the Hurricane Weather Research and Forecasting (HWRF) Model retrospective forecasts in the North Atlantic (NATL) and eastern North Pacific (EPAC) basins during 2011–14. Forecasts with large 24-h intensity errors are defined to be in the top 15% of all cases in the distribution that underforecast intensity. These forecasts are compared to analog forecasts taken from the bottom 50% of the error distribution. Analog forecasts are identified by finding the case that has 0–24-h intensity and wind shear magnitude time series that are similar to the large intensity error forecasts. Composite differences of the large and small intensity error forecasts reveal that the EPAC large error forecasts have weaker reflectivity and vertical motion near the TC inner core from 3 h onward. Results over the NATL are less clear, with the significant differences between the large and small error forecasts occurring radially outward from the TC core. Though applied to TCs, this analog methodology could be useful for diagnosing systematic model biases in other applications.

Current affiliation: Department of Applied Aviation Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel J. Halperin, daniel.halperin@erau.edu
Save
  • Bao, J.-W., S. Gopalakrishnan, S. Michelson, F. Marks, and M. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 32783299, https://doi.org/10.1175/MWR-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, https://doi.org/10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., and T. M. Hamill, 2015: Diagnosis of track forecast errors for Tropical Cyclone Rita (2005) using GEFS reforecasts. Wea. Forecasting, 30, 13341354, https://doi.org/10.1175/WAF-D-15-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., X. Zhang, J.-W. Bao, K.-S. Yeh, and R. Atlas, 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, https://doi.org/10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33, https://doi.org/10.1175/BAMS-87-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, https://doi.org/10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., R. Rogers, and R. E. Hart, 2015: Shear-relative asymmetries in tropical cyclone eyewall slope. Mon. Wea. Rev., 143, 883903, https://doi.org/10.1175/MWR-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B., C. Neumann, and M. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp., http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.

  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 11641176, https://doi.org/10.1175/MWR-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamberson, W. S., R. D. Torn, L. F. Bosart, and L. Magnusson, 2016: Diagnosis of the source and evolution of medium-range forecast errors for extratropical cyclone Joachim. Wea. Forecasting, 31, 11971214, https://doi.org/10.1175/WAF-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAdie, C., C. Landsea, C. Neumann, J. David, E. Blake, and G. Hammer, 2009: Tropical cyclones of the North Atlantic Ocean, 1851–2006. Historical Climatology Series 6-2, 238 pp., http://www.nhc.noaa.gov/pdf/TC_Book_Atl_1851-2006_lowres.pdf.

  • NHC, 2016: National Hurricane Center forecast verification: Official error trends. National Hurricane Center, http://www.nhc.noaa.gov/verification/verify5.shtml.

  • Rappaport, E. N., J.-G. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc., 93, 371380, https://doi.org/10.1175/BAMS-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016a: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016b: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I.-H. Kwon, 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2016: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation. NCAR Tech. Note NCAR/TN-522+STR, 119 pp., https://opensky.ucar.edu/islandora/object/technotes%3A535/datastream/PDF/view.

  • Torn, R. D., J. S. Whitaker, P. Pegion, T. M. Hamill, and G. J. Hakim, 2015: Diagnosis of the source of GFS medium-range track errors in Hurricane Sandy (2012). Mon. Wea. Rev., 143, 132152, https://doi.org/10.1175/MWR-D-14-00086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., D. R. Thatcher, and C. Jablonowski, 2016: Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data. J. Adv. Model. Earth Syst., 9, 130148, https://doi.org/10.1002/2016MS000775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Wea. Rev., 143, 39813995, https://doi.org/10.1175/MWR-D-14-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 100 5
PDF Downloads 178 29 4