Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors

Sung-Hun Kim Interdisciplinary Program in Marine Meteorology, Typhoon Research Center, Jeju National University, and National Typhoon Center, Korea Meteorological Administration, Jeju, South Korea

Search for other papers by Sung-Hun Kim in
Current site
Google Scholar
PubMed
Close
,
Il-Ju Moon Interdisciplinary Program in Marine Meteorology, Typhoon Research Center, Jeju National University, Jeju, South Korea

Search for other papers by Il-Ju Moon in
Current site
Google Scholar
PubMed
Close
, and
Pao-Shin Chu Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pao-Shin Chu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Il-Ju Moon, ijmoon@jejunu.ac.kr

Abstract

A statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Il-Ju Moon, ijmoon@jejunu.ac.kr
Save
  • Aczel, A. D., 1989: Complete Business Statistics. Richard D. Irwin, 1056 pp.

  • Bezdek, J. C., 1981: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic, 256 pp.

    • Crossref
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207, https://doi.org/10.1175/1520-0434(2000)015<0192:CIASFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., H. Yu, and J. C. L. Chan, 2011: A western North Pacific tropical cyclone intensity prediction scheme. Acta Meteor. Sin., 25, 611624, https://doi.org/10.1007/s13351-011-0506-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and X. Zhao, 2011: Bayesian analysis for extreme climatic events: A review. Atmos. Res., 102, 243262, https://doi.org/10.1016/j.atmosres.2011.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., X. Zhao, C.-H. Ho, H.-S. Kim, M.-M. Lu, and J.-H. Kim, 2010: Bayesian forecasting of seasonal typhoon activity: A track-pattern-oriented categorization approach. J. Climate, 23, 66546668, https://doi.org/10.1175/2010JCLI3710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 2009: A simplified dynamical system for tropical cyclone intensity prediction. Mon. Wea. Rev., 137, 6882, https://doi.org/10.1175/2008MWR2513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994a: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994b: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses. J. Appl. Meteor., 45, 491499, https://doi.org/10.1175/JAM2351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, https://doi.org/10.1175/BAMS-D-12-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., G. G. Coltrane, and P. L. Krueger, 1974: Typhoon and tropical storm intensity forecasts for 24, 48 and 72 hours using statistical regression equations. Environmental Prediction Research Facility Tech. Note 15, 25 pp.

  • Emanuel, K. A., 1988: Toward a general theory of hurricanes. Amer. Sci., 76, 370379.

  • Fitzpatrick, P. J., 1997: Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting, 12, 826846, https://doi.org/10.1175/1520-0434(1997)012<0826:UAFTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G., and Coauthors, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of tropical cyclone intensity for North Atlantic basin. NOAA Tech. Memo. NWS NHC 10, 22 pp., https://www.nhc.noaa.gov/pdf/NWS-NHC-1979-10.pdf.

  • Jones, S. C., 2000: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126, 31613185, https://doi.org/10.1002/qj.49712657009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteor., 40, 280286, https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., J.-H. Kim, C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, https://doi.org/10.1175/2010JCLI3751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C.-H. Ho, J.-H. Kim, and P.-S. Chu, 2012: Track-pattern-based model for seasonal prediction of tropical cyclone activity in the western North Pacific. J. Climate, 25, 46604678, https://doi.org/10.1175/JCLI-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and C. R. Sampson, 2009: Southern Hemisphere tropical cyclone intensity forecast methods used at the Joint Typhoon Warning Center, Part II: Statistical–dynamical forecasts. Aust. Meteor. Oceanogr. J., 58, 918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003: Statistical 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational Statistical Typhoon Intensity Prediction Scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009a: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009b: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, https://doi.org/10.1175/2009MWR2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316, https://doi.org/10.1175/2007WAF2006111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mainelli-Huber, M., 2000: On the role of the upper ocean in tropical cyclone intensity change. M.S. thesis, Dept. of Meteorology and Physical Oceanography, University of Miami, Miami, FL, 73 pp.

  • Moon, I.-J., and S. J. Kwon, 2012: Impact of upper-ocean thermal structure on the intensity of Korean peninsula landfall typhoons. Prog. Oceanogr., 105, 6166, https://doi.org/10.1016/j.pocean.2012.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1948: On the formation and structure of tropical hurricanes. Geophysica, 3, 2638.

  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane–ocean interaction: Vertically integrated or vertically averaged ocean temperature? Ocean Sci., 5, 351368, https://doi.org/10.5194/os-5-351-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc., 93, 371380, https://doi.org/10.1175/BAMS-D-11-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H. 1950: A model of hurricane formation. J. Appl. Phys., 21, 917925.

  • Sampson, C., E. Fukada, J. A. Knaff, B. Strahl, M. Brennan, and T. Marchok, 2017: Tropical cyclone gale wind radii estimates for the western North Pacific. Wea. Forecasting, 32, 10291040, https://doi.org/10.1175/WAF-D-16-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, A. S., M. DeMaria, and J. Knaff, 2013: Summary of the new statistical-dynamical intensity forecast models for the Indian Ocean and Southern Hemisphere and resulting performance. JTWC Project Final Rep., 11 pp.

  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, Y. Ha, Y. Wang, and X. D. Wang, 2013: The dynamic and thermodynamic perspectives of relative and absolute sea surface temperature on tropical cyclone intensity. Acta Meteor. Sin., 27, 4049, https://doi.org/10.1007/s13351-013-0105-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, https://doi.org/10.1029/2012GL053546.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 483 99 4
PDF Downloads 364 80 3