A 10-Year Survey of Tropical Cyclone Inner-Core Lightning Bursts and Their Relationship to Intensity Change

Stephanie N. Stevenson University at Albany, State University of New York, Albany, New York

Search for other papers by Stephanie N. Stevenson in
Current site
Google Scholar
PubMed
Close
,
Kristen L. Corbosiero University at Albany, State University of New York, Albany, New York

Search for other papers by Kristen L. Corbosiero in
Current site
Google Scholar
PubMed
Close
,
Mark DeMaria NOAA/National Hurricane Center, Miami, Florida

Search for other papers by Mark DeMaria in
Current site
Google Scholar
PubMed
Close
, and
Jonathan L. Vigh National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jonathan L. Vigh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study seeks to reconcile discrepancies between previous studies analyzing the relationship between lightning and tropical cyclone (TC) intensity change. Inner-core lightning bursts (ICLBs) were identified from 2005 to 2014 in North Atlantic (NA) and eastern North Pacific (ENP) TCs embedded in favorable environments (e.g., vertical wind shear ≤ 10 m s−1; sea surface temperatures ≥ 26.5°C) using data from the World Wide Lightning Location Network (WWLLN) transformed onto a regular grid with 8-km grid spacing to replicate the expected nadir resolution of the Geostationary Lightning Mapper (GLM). Three hypothesized factors that could impact the 24-h intensity change after a burst were tested: 1) prior intensity change, 2) azimuthal burst location, and 3) radial burst location. Most ICLBs occurred in weak TCs (tropical depressions and tropical storms), and most TCs intensified (remained steady) 24 h after burst onset in the NA (ENP). TCs were more likely to intensify 24 h after an ICLB if they were steady or intensifying prior to burst onset. Azimuthally, 75% of the ICLBs initiated downshear, with 92% of downshear bursts occurring in TCs that remained steady or intensified. Of the ICLBs that initiated or rotated upshear, 2–3 times more were associated with TC intensification than weakening, consistent with recent studies finding more symmetric convection in intensifying TCs. The radial burst location relative to the radius of maximum wind (RMW) provided the most promising result: TCs with an ICLB inside (outside) the RMW were associated with intensification (weakening).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie N. Stevenson, sstevenson@albany.edu

Abstract

This study seeks to reconcile discrepancies between previous studies analyzing the relationship between lightning and tropical cyclone (TC) intensity change. Inner-core lightning bursts (ICLBs) were identified from 2005 to 2014 in North Atlantic (NA) and eastern North Pacific (ENP) TCs embedded in favorable environments (e.g., vertical wind shear ≤ 10 m s−1; sea surface temperatures ≥ 26.5°C) using data from the World Wide Lightning Location Network (WWLLN) transformed onto a regular grid with 8-km grid spacing to replicate the expected nadir resolution of the Geostationary Lightning Mapper (GLM). Three hypothesized factors that could impact the 24-h intensity change after a burst were tested: 1) prior intensity change, 2) azimuthal burst location, and 3) radial burst location. Most ICLBs occurred in weak TCs (tropical depressions and tropical storms), and most TCs intensified (remained steady) 24 h after burst onset in the NA (ENP). TCs were more likely to intensify 24 h after an ICLB if they were steady or intensifying prior to burst onset. Azimuthally, 75% of the ICLBs initiated downshear, with 92% of downshear bursts occurring in TCs that remained steady or intensified. Of the ICLBs that initiated or rotated upshear, 2–3 times more were associated with TC intensification than weakening, consistent with recent studies finding more symmetric convection in intensifying TCs. The radial burst location relative to the radius of maximum wind (RMW) provided the most promising result: TCs with an ICLB inside (outside) the RMW were associated with intensification (weakening).

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie N. Stevenson, sstevenson@albany.edu
Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, https://doi.org/10.1029/2009JD013411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., K. L. Corbosiero, and D. Vollaro, 2011: The World Wide Lightning Location Network and convective activity in tropical cyclones. Mon. Wea. Rev., 139, 175191, https://doi.org/10.1175/2010MWR3383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2001: LIS/OTD 0.5 degree High Resolution Full Climatology (HRFC). NASA Global Hydrology Center DAAC, Hunstville, AL, accessed 13 July 2015, doi:10.5067/LIS/LIS-OTD/DATA302.

    • Crossref
    • Export Citation
  • Cecil, D. J., and E. J. Zipser, 1999: Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123, https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, https://doi.org/10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, https://doi.org/10.1175/MWR3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical wind shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., X. Shao, T. Hamlin, J. M. Reisner, and J. Harlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita and Katrina. Mon. Wea. Rev., 139, 14921504, https://doi.org/10.1175/2010MWR3532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, https://doi.org/10.1175/JCLI-D-12-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, https://doi.org/10.1029/2012GL052115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, R. T. DeMaria, and D. A. Molenar, 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, https://doi.org/10.1175/JAMC-D-14-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucienska, B., G. B. Raga, and R. Romero-Centeno, 2012a: High lightning activity in maritime clouds near Mexico. Atmos. Chem. Phys., 12, 80558072, https://doi.org/10.5194/acp-12-8055-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kucienska, B., G. B. Raga, and V. M. Torres-Puente, 2012b: Climatology of precipitation and lightning over the Pacific coast of southern Mexico retrieved from Tropical Rainfall Measuring Mission satellite products and World Wide Lightning Location Network data. Int. J. Remote Sens., 33, 28312850, https://doi.org/10.1080/01431161.2011.621905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, V. Idone, R. Henderson, and A. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99, 16 66516 676, https://doi.org/10.1029/94JD00722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Moore, and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127, 520534, https://doi.org/10.1175/1520-0493(1999)127<0520:CSOHAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, D. Liu, D. Wang, and J. Yang, 2010: The lightning activities in super typhoons over the northwest Pacific. Sci. China Earth Sci., 53, 12411248, https://doi.org/10.1007/s11430-010-3034-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L., X. Qie, and D. Wang, 2014: Lightning activity and its relation to the intensity of typhoons over the northwest Pacific Ocean. Adv. Atmos. Sci., 31, 581592, https://doi.org/10.1007/s00376-013-3115-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329332, https://doi.org/10.1038/ngeo477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. C. Marsico, 1993: An improved real-time global sea surface temperature analysis. J. Climate, 6, 114119, https://doi.org/10.1175/1520-0442(1993)006<0114:AIRTGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part II: Ophelia (2011). J. Atmos. Sci., 73, 15551575, https://doi.org/10.1175/JAS-D-15-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, R. H. Holzworth, and E. H. Lay, 2009: Growing detection efficiency of the World Wide Lightning Location Network. AIP Conf. Proc., 1118, https://doi.org/10.1063/1.3137706.

    • Crossref
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Eduoard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero-Centeno, R., J. Zavala-Hidalgo, and G. B. Raga, 2007: Midsummer gap winds and low-level circulation over the eastern tropical Pacific. J. Climate, 20, 37683784, https://doi.org/10.1175/JCLI4220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluation WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, https://doi.org/10.1002/grl.50428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, K., and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136, 17061726, https://doi.org/10.1175/2007MWR2150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and S. F. Abarca, 2016: Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Mon. Wea. Rev., 144, 225239, https://doi.org/10.1175/MWR-D-15-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, and E. J. Zipser, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, https://doi.org/10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and Coauthors, 2016: FLIGHT+: The extended flight level dataset for tropical cyclones (version 1.1). Tropical Cyclone Data Project, Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, accessed 27 September 2016, http://dx.doi.org/10.5065/D6WS8R93.

    • Crossref
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, and W. Zhang, 2017: Relationships between total lightning, deep convection, and tropical cyclone intensity change. J. Geophys. Res. Atmos., 122, 70477063, https://doi.org/10.1002/2017JD027072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, https://doi.org/10.1175/JAS-D-13-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Eduoard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Zhang, D. Zheng, F. Wang, and L. Xu, 2015: Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J. Geophys. Res. Atmos., 120, 40724089, https://doi.org/10.1002/2014JD022334.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1550 449 30
PDF Downloads 910 225 11