Modeling the Evolution and Life Cycle of Radiative Cold Pools and Fog

Travis H. Wilson Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Travis H. Wilson in
Current site
Google Scholar
PubMed
Close
and
Robert G. Fovell Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Robert G. Fovell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite an increased understanding of the physical processes involved, forecasting radiative cold pools and their associated meteorological phenomena (e.g., fog and freezing rain) remains a challenging problem in mesoscale models. The present study is focused on California’s tule fog where the Weather Research and Forecasting (WRF) Model’s frequent inability to forecast these events is addressed and substantially improved. Specifically, this was accomplished with four major changes from a commonly employed, default configuration. First, horizontal model diffusion and numerical filtering along terrain slopes was deactivated (or mitigated) since it is unphysical and can completely prevent the development of fog. However, this often resulted in unrealistically persistent foggy boundary layers that failed to lift. Next, changes specific to the Yonsei University (YSU) planetary boundary layer (PBL) scheme were adopted that include using the ice–liquid-water potential temperature to determine vertical stability, a reversed eddy mixing K profile to represent the consequences of negatively buoyant thermals originating near the fog (PBL) top, and an additional entrainment term to account for the turbulence generated by cloud-top (radiative and evaporative) cooling. While other changes will be discussed, it is these modifications that create, to a sizable degree, marked improvements in modeling the evolution and life cycle of fog, low stratus clouds, and adiabatic cold pools.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Robert Fovell, rfovell@albany.edu

Abstract

Despite an increased understanding of the physical processes involved, forecasting radiative cold pools and their associated meteorological phenomena (e.g., fog and freezing rain) remains a challenging problem in mesoscale models. The present study is focused on California’s tule fog where the Weather Research and Forecasting (WRF) Model’s frequent inability to forecast these events is addressed and substantially improved. Specifically, this was accomplished with four major changes from a commonly employed, default configuration. First, horizontal model diffusion and numerical filtering along terrain slopes was deactivated (or mitigated) since it is unphysical and can completely prevent the development of fog. However, this often resulted in unrealistically persistent foggy boundary layers that failed to lift. Next, changes specific to the Yonsei University (YSU) planetary boundary layer (PBL) scheme were adopted that include using the ice–liquid-water potential temperature to determine vertical stability, a reversed eddy mixing K profile to represent the consequences of negatively buoyant thermals originating near the fog (PBL) top, and an additional entrainment term to account for the turbulence generated by cloud-top (radiative and evaporative) cooling. While other changes will be discussed, it is these modifications that create, to a sizable degree, marked improvements in modeling the evolution and life cycle of fog, low stratus clouds, and adiabatic cold pools.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Robert Fovell, rfovell@albany.edu
Save
  • Avey, L., 2011: Challenges of meteorological and photochemical modeling of Utah’s wintertime cold pools. Western Meteorological, Emissions, and Air Quality Modeling Workshop, Boulder, CO, Western Regional Air Partnership, https://www.wrapair2.org/pdf/Avey_UT_ColdPolds.pdf.

  • Baker, K. R., H. Simon, and J. T. Kelly, 2011: Challenges to modeling “cold pool” meteorology associated with high pollution episodes. Environ. Sci. Technol., 45, 71187119, https://doi.org/10.1021/es202705v.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 12181230, https://doi.org/10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., E. Terradellas, J. Cuxart, A. Mira, O. Liechti, M. Mueller, and N. W. Nielsen, 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46, 504521, https://doi.org/10.1175/JAM2475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178196, https://doi.org/10.1002/qj.49709941915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billings, B. J., V. Grubis̆ić, and R. D. Borys, 2006: Maintenance of a mountain valley cold pool: A numerical study. Mon. Wea. Rev., 134, 22662278, https://doi.org/10.1175/MWR3180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., H. K. Baltink, H. J. Hemink, F. C. Bosveld, and M. Moerman, 2013: Ground-based observations and modeling of the visibility and radar reflectivity in a radiation fog layer. J. Atmos. Oceanic Technol., 30, 288300, https://doi.org/10.1175/JTECH-D-12-00081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and J. Uchida, 2007: Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo. Geophys. Res. Lett., 34, L03813, doi:10.1029/2006GL027648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440, https://doi.org/10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2004: A reevaluation of ice–liquid water potential temperature. Mon. Wea. Rev., 132, 24212431, https://doi.org/10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in SE Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, https://doi.org/10.1175/JAS3561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and Y. Zhang, 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. TM-1999–104–606, Vol. 15, Goddard Space Flight Center, Greenbelt, MD, 38 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990060930.pdf.

  • CHP, 2017: SWITRS—Internet statewide integrated traffic records system. California Highway Patrol, https://www.chp.ca.gov/Programs-Services/Services-Information/SWITRS-Internet-Statewide-Integrated-Traffic-Records-System.

  • Clark, P. A., and W. P. Hopwood, 2001: One-dimensional site-specific forecasting of radiation fog. Part I: Model formulation and idealised sensitivity studies. Meteor. Appl., 8, 279286, https://doi.org/10.1017/S1350482701003036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., and P. G. Duynkerke, 1989: Current problems in the stratocumulus-topped atmospheric boundary layer. Bound.-Layer Meteor., 46, 275303, https://doi.org/10.1007/BF00120843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 2010: Weather-related aviation accident study. FAA Rep., 51 pp. + appendixes, http://www.asias.faa.gov/i/2003-2007weatherrelatedaviationaccidentstudy.pdf.

  • Gustavsson, T., M. Karlsson, J. Bogren, and S. Lindqvist, 1998: Development of temperature patterns during clear nights. J. Appl. Meteor., 37, 559571, https://doi.org/10.1175/1520-0450(1998)037<0559:DOTPDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2010: PARISFOG: Shedding new light on fog physical processes. Bull. Amer. Meteor. Soc., 91, 767783, https://doi.org/10.1175/2009BAMS2671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holets, S., and R. N. Swanson, 1981: High-inversion fog episodes in central California. J. Appl. Meteor., 20, 890899, https://doi.org/10.1175/1520-0450(1981)020<0890:HIFEIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., E. I. F. De Bruijn, and H.-L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Huang, H., H. Liu, J. Huang, W. Mao, and X. Bi, 2015: Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Mon. Wea. Rev., 143, 19071923, https://doi.org/10.1175/MWR-D-14-00207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, https://doi.org/10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, J., 1982: The physics of radiation fog. J. Meteor. Soc. Japan, 60, 486498, https://doi.org/10.2151/jmsj1965.60.1_486.

  • Moeng, C.-H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261278, https://doi.org/10.1175/1520-0477(1996)077<0261:SOASTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets. Part I: Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, https://doi.org/10.1002/qj.49711247209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. D. Turton, 1986: An observational study of the structure of stratiform cloud sheets. Part II: Entrainment. Quart. J. Roy. Meteor. Soc., 112, 461480, https://doi.org/10.1002/qj.49711247210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. Cheon, S. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, E. M., A. M. Peterson, and H. D. Parry, 1973: RASS, a remote sensing system for measuring low-level temperature profiles. Bull. Amer. Meteor. Soc., 54, 912919, https://doi.org/10.1175/1520-0477(1973)054<0912:RARSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, G.-S., and E. M. Agee, 1996: Large eddy simulation of turbulent flow in a marine convective boundary layer with snow. J. Atmos. Sci., 53, 86100, https://doi.org/10.1175/1520-0469(1996)053<0086:LESOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryerson, W. R., and J. P. Hacker, 2014: The potential for mesoscale visibility predictions with a multimodel ensemble. Wea. Forecasting, 29, 543562, https://doi.org/10.1175/WAF-D-13-00067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Q., D. A. Randall, C. H. Moeng, and R. E. Dickinson, 1997: A method to determine the amounts of cloud-top radiative and evaporative cooling in a stratocumulus-topped boundary layer. Quart. J. Roy. Meteor. Soc., 123, 21872213, https://doi.org/10.1002/qj.49712354403.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265289, https://doi.org/10.1007/s10546-014-9973-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Underwood, S. J., G. P. Ellrod, and A. L. Kuhnert, 2004: A multiple-case analysis of nocturnal radiation-fog development in the Central Valley of California utilizing the GOES nighttime fog product. J. Appl. Meteor., 43, 297311, https://doi.org/10.1175/1520-0450(2004)043<0297:AMAONR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Velde, I. R., G. J. Steeneveld, B. G. J. W. Schreur, and A. A. M. Holtslag, 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 42374253, https://doi.org/10.1175/2010MWR3427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Meijgaard, E., and A. Van Ulden, 1998: A first order mixing–condensation scheme for nocturnal stratocumulus. Atmos. Res., 45, 253273, https://doi.org/10.1016/S0169-8095(97)00080-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, R. M., M. G. Ravichandran, and S. K. Cox, 1986: Prediction of quasi-periodic oscillations in radiation fogs. Part I: Comparison of simple similarity approaches. J. Atmos. Sci., 43, 633651, https://doi.org/10.1175/1520-0469(1986)043<0633:POQPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 2007: Some aspects of dense fog in the midwestern United States. Wea. Forecasting, 22, 457465, https://doi.org/10.1175/WAF990.1.

  • Wilson, T. H., and R. G. Fovell, 2016: Modeling the evolution and life cycle of stable cold pools. Wea. Forecasting, 31, 17531769, https://doi.org/10.1175/WAF-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, H., and Coauthors, 2015: Modifications to WRF’s dynamical core to improve the treatment of moisture for large-eddy simulations. J. Adv. Model. Earth Syst., 7, 16271642, https://doi.org/10.1002/2015MS000532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and G. Feingold, 2012: Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model. J. Adv. Model. Earth Syst., 4, M09003, doi:10.1029/2012MS000164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2005: Formation of extreme cold-air pools in elevated sinkholes: An idealized numerical process study. Mon. Wea. Rev., 133, 925941, https://doi.org/10.1175/MWR2895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and B. S. Ferrier, 2008: Asymptotic analysis of equilibrium in radiation fog. J. Appl. Meteor. Climatol., 47, 17041722, https://doi.org/10.1175/2007JAMC1685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303322, https://doi.org/10.1175/2009WAF2222289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4797 3616 355
PDF Downloads 674 125 7