Observations of Right-Moving Supercell Motion Forecast Errors

Matthew J. Bunkers NOAA/National Weather Service, Rapid City, South Dakota

Search for other papers by Matthew J. Bunkers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two shear-based supercell motion forecast methods are assessed to understand how each method performs under differing environmental conditions for observed right-moving supercells. Accordingly, a 573-case observational dataset is partitioned into small versus large values of environmental and storm-related variables such as bulk wind shear, convective available potential energy, mean wind, storm motion, and storm-relative helicity (SRH). In addition, hodographs are partitioned based on the tornado damage scale, as well as where the storm motion falls among the four quadrants. With respect to the 573-case dataset, the largest supercell motion forecast errors generally occur when the (i) observed midlevel (4–5 km AGL) storm-relative winds are either anomalously weak or strong, (ii) observed 0–3-km AGL SRH is large, (iii) supercell motion is fast, (iv) convective inhibition is strong, or (v) the surface–500-mb (1 mb = 1 hPa) RH is low. Moreover, significantly tornadic supercells are biased 1.2 m s−1 slower and farther right of the hodograph than predicted by the Bunkers forecast method, but show very small bias for the modified Rasmussen–Blanchard method (though errors are slightly larger for this method). Conversely, the smallest errors occur when, relative to the overall sample, the (i) observed upper-level (9–10 km AGL) storm-relative winds are strong, (ii) supercell motion is slow or the mean wind is weak, (iii) surface–500-mb RH is high, or (iv) convective inhibition is weak. Errors also are relatively small when storm motion lies in the bottom-left hodograph quadrant.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Matthew J. Bunkers, matthew.bunkers@noaa.gov

Abstract

Two shear-based supercell motion forecast methods are assessed to understand how each method performs under differing environmental conditions for observed right-moving supercells. Accordingly, a 573-case observational dataset is partitioned into small versus large values of environmental and storm-related variables such as bulk wind shear, convective available potential energy, mean wind, storm motion, and storm-relative helicity (SRH). In addition, hodographs are partitioned based on the tornado damage scale, as well as where the storm motion falls among the four quadrants. With respect to the 573-case dataset, the largest supercell motion forecast errors generally occur when the (i) observed midlevel (4–5 km AGL) storm-relative winds are either anomalously weak or strong, (ii) observed 0–3-km AGL SRH is large, (iii) supercell motion is fast, (iv) convective inhibition is strong, or (v) the surface–500-mb (1 mb = 1 hPa) RH is low. Moreover, significantly tornadic supercells are biased 1.2 m s−1 slower and farther right of the hodograph than predicted by the Bunkers forecast method, but show very small bias for the modified Rasmussen–Blanchard method (though errors are slightly larger for this method). Conversely, the smallest errors occur when, relative to the overall sample, the (i) observed upper-level (9–10 km AGL) storm-relative winds are strong, (ii) supercell motion is slow or the mean wind is weak, (iii) surface–500-mb RH is high, or (iv) convective inhibition is weak. Errors also are relatively small when storm motion lies in the bottom-left hodograph quadrant.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Matthew J. Bunkers, matthew.bunkers@noaa.gov
Save
  • Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 29102927, https://doi.org/10.1175/1520-0493(1999)127<2910:TIOPBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and H. B. Bluestein, 2004: Hodograph variability within analytically modeled, synoptic-scale, baroclinic systems. Mon. Wea. Rev., 132, 14481461, https://doi.org/10.1175/1520-0493(2004)132<1448:HVWAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1993: A compositing approach for preserving significant features in atmospheric profiles. Mon. Wea. Rev., 121, 874880, https://doi.org/10.1175/1520-0493(1993)121<0874:ACAFPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: The evolution of tornadic storms. J. Atmos. Sci., 22, 664668, https://doi.org/10.1175/1520-0469(1965)022<0664:TEOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. S. Johnson, L. J. Czepyha, J. M. Grzywacz, B. A. Klimowski, and M. R. Hjelmfelt, 2006: An observational examination of long-lived supercells. Part II: Environmental conditions and forecasting. Wea. Forecasting, 21, 689714, https://doi.org/10.1175/WAF952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., J. R. Wetenkamp Jr., J. J. Schild, and A. Fischer, 2010: Observations of the relationship between 700-mb temperatures and severe weather reports across the contiguous United States. Wea. Forecasting, 25, 799814, https://doi.org/10.1175/2009WAF2222333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., D. A. Barber, R. L. Thompson, R. Edwards, and J. Garner, 2014: Choosing a universal mean wind for supercell motion prediction. J. Oper. Meteor., 2 (11), 115129, https://doi.org/10.15191/nwajom.2014.0211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Corfidi, and D. M. Schultz, 2008: Elevated convection and castellanus: Ambiguities, significance, and questions. Wea. Forecasting, 23, 12801303, https://doi.org/10.1175/2008WAF2222118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 31783205, https://doi.org/10.1175/1520-0469(2003)059<3178:LANPOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finch, J., and D. Bikos, 2010: A long-lived tornadic supercell over Colorado and Wyoming, 22 May 2008. Electron. J. Severe Storms Meteor., 5 (5), http://www.ejssm.org/ojs/index.php/ejssm/issue/view/23.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. Van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, https://doi.org/10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1984: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112, 449464, https://doi.org/10.1175/1520-0493(1984)112<0449:ASCONF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirkpatrick, J. C., E. W. McCaul Jr., and C. Cohen, 2007: The motion of simulated convective storms as a function of basic environmental parameters. Mon. Wea. Rev., 135, 30333051, https://doi.org/10.1175/MWR3447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacIntosh, C. W., and M. D. Parker, 2017: The 6 May 2010 elevated supercell during VORTEX2. Mon. Wea. Rev., 145, 26352657, https://doi.org/10.1175/MWR-D-16-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322336, https://doi.org/10.1175/1520-0493(1980)108<0322:ASOTTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, E. R., G. R. Herman, R. C. Tournay, J. M. Peters, and R. S. Schumacher, 2015: Double impact: When both tornadoes and flash floods threaten the same place at the same time. Wea. Forecasting, 30, 16731693, https://doi.org/10.1175/WAF-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The characteristics of numerically simulated supercell storms situated over statically stable boundary layers. Mon. Wea. Rev., 139, 31393162, https://doi.org/10.1175/MWR-D-10-05087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2011: NWS Central Region service assessment: Joplin, Missouri, tornado – May 22, 2011. NOAA/NWS Central Region Headquarters, 41 pp., https://www.weather.gov/media/publications/assessments/Joplin_tornado.pdf.

  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, https://doi.org/10.1175/2010WAF2222368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and C. A. Doswell III, 2005: A sensitivity study of hodograph-based methods for estimating supercell motion. Wea. Forecasting, 20, 954970, https://doi.org/10.1175/WAF889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 24062421, https://doi.org/10.1175/1520-0493(1998)126<2406:VISMPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., 1979: Storm motion as related to boundary-layer convergence. Mon. Wea. Rev., 107, 612619, https://doi.org/10.1175/1520-0493(1979)107<0612:SMARTB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110, 707718, https://doi.org/10.1175/1520-0493(1982)110<0707:MAOTGF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Zehr, R. M., and J. F. W. Purdom, 1982: Examples of a wide variety of thunderstorm propagation mechanisms. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 499–502.

  • Zeitler, J. W., and M. J. Bunkers, 2005: Operational forecasting of supercell motion: Review and case studies using multiple datasets. Natl. Wea. Dig., 29, 8197, http://nwafiles.nwas.org/digest/papers/2005/Vol29No1/Pg81-Zeitler.pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 696 151 7
PDF Downloads 720 153 6