Improving NCEP HWRF Simulations of Surface Wind and Inflow Angle in the Eyewall Area

Weiguo Wang NOAA/National Centers for Environmental Prediction/Environment Modeling Center/I. M. Systems Group, College Park, Maryland

Search for other papers by Weiguo Wang in
Current site
Google Scholar
PubMed
Close
,
Jason A. Sippel NOAA Hurricane Research Division, Miami, Florida

Search for other papers by Jason A. Sippel in
Current site
Google Scholar
PubMed
Close
,
Sergio Abarca NOAA/National Centers for Environmental Prediction/Environment Modeling Center/I. M. Systems Group, College Park, Maryland

Search for other papers by Sergio Abarca in
Current site
Google Scholar
PubMed
Close
,
Lin Zhu NOAA/National Centers for Environmental Prediction/Environment Modeling Center/I. M. Systems Group, College Park, Maryland

Search for other papers by Lin Zhu in
Current site
Google Scholar
PubMed
Close
,
Bin Liu NOAA/National Centers for Environmental Prediction/Environment Modeling Center/I. M. Systems Group, College Park, Maryland

Search for other papers by Bin Liu in
Current site
Google Scholar
PubMed
Close
,
Zhan Zhang NOAA/National Centers for Environmental Prediction/Environment Modeling Center/I. M. Systems Group, College Park, Maryland

Search for other papers by Zhan Zhang in
Current site
Google Scholar
PubMed
Close
,
Avichal Mehra NOAA/National Centers for Environmental Prediction/Environment Modeling Center, College Park, Maryland

Search for other papers by Avichal Mehra in
Current site
Google Scholar
PubMed
Close
, and
Vijay Tallapragada NOAA/National Centers for Environmental Prediction/Environment Modeling Center, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This note describes a modification of the boundary layer parameterization scheme in the Hurricane Weather Research and Forecasting (HWRF) Model, which improves the simulations of low-level wind and surface inflow angle in the eyewall area and has been implemented in the HWRF system and used in the operational system since 2016. The modification is on an observation-based adjustment of eddy diffusivity previously implemented in the model. It is needed because the previous adjustment resulted in a discontinuity in the vertical distribution of eddy diffusivity near the surface-layer top, which increases the friction within the surface layer and compromises the surface-layer constant-flux assumption. The discontinuity affects the simulation of storm intensity and intensification, one of the main metrics of model performance, particularly in strong tropical cyclones. This issue is addressed by introducing a height-dependent adjustment so that the vertical profile of eddy diffusivity is continuous throughout the boundary layer. It is shown that the implementation of the modification results in low-level winds and surface inflow angles in the storm’s eyewall region closer to observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weiguo Wang, weiguo.wang@noaa.gov

Abstract

This note describes a modification of the boundary layer parameterization scheme in the Hurricane Weather Research and Forecasting (HWRF) Model, which improves the simulations of low-level wind and surface inflow angle in the eyewall area and has been implemented in the HWRF system and used in the operational system since 2016. The modification is on an observation-based adjustment of eddy diffusivity previously implemented in the model. It is needed because the previous adjustment resulted in a discontinuity in the vertical distribution of eddy diffusivity near the surface-layer top, which increases the friction within the surface layer and compromises the surface-layer constant-flux assumption. The discontinuity affects the simulation of storm intensity and intensification, one of the main metrics of model performance, particularly in strong tropical cyclones. This issue is addressed by introducing a height-dependent adjustment so that the vertical profile of eddy diffusivity is continuous throughout the boundary layer. It is shown that the implementation of the modification results in low-level winds and surface inflow angles in the storm’s eyewall region closer to observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Weiguo Wang, weiguo.wang@noaa.gov
Save
  • Bao, J. W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 32783299, https://doi.org/10.1175/MWR-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, https://doi.org/10.1175/2007MWR2032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, M., and Coauthors, 2017: Hurricane Weather Research and Forecasting (HWRF) Model: 2017 scientific documentation. Developmental Testbed Center Rep., 105 pp., https://dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.9a_ScientificDoc.pdf.

  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: Model study of the stably stratified planetary boundary-layer. J. Atmos. Sci., 35, 14271440, https://doi.org/10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., and R. G. Fovell, 2015: Model physics influences on tropical cyclone size. 16th Conf. on Mesoscale Processes, Boston, MA, Amer. Meteor. Soc., 17.2, https://ams.confex.com/ams/16Meso/webprogram/Paper274629.html.

  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1.

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., X. J. Zhang, J. W. Bao, K. S. Yeh, and R. Atlas, 2011: The Experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 17621784, https://doi.org/10.1175/2010MWR3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. Zhang, F. Marks Jr., K. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, https://doi.org/10.1175/WAF-D-11-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J. W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685690, https://doi.org/10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. L., and Z. X. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, https://doi.org/10.1175/2008MWR2366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, https://doi.org/10.1002/qj.679.

  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2015: Hurricane Weather Research and Forecasting (HWRF) Model: 2015 scientific documentation. Developmental Testbed Center Rep., 113 pp., http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRF_v3.7a_SD.pdf.

  • Tallapragada, V., and Coauthors, 2016: Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF Model: Model upgrades and evaluation of real-time performance in 2013. Wea. Forecasting, 31, 877894, https://doi.org/10.1175/WAF-D-14-00139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple-model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 17361749, https://doi.org/10.1175/JAM2160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405, https://doi.org/10.1175/2008JAMC1841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., X. Shen, and W. Huang, 2016: A comparison of boundary-layer characteristics simulated using different parametrization schemes. Bound.-Layer Meteor., 161, 375403, https://doi.org/10.1007/s10546-016-0175-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 1995: An inverse balance equation in sigma coordinates for model initialization. Mon. Wea. Rev., 123, 482488, https://doi.org/10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Wea. Rev., 143, 39813995, https://doi.org/10.1175/MWR-D-14-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 361 99 5
PDF Downloads 313 66 2