Improving the Explicit Prediction of Freezing Rain in a Kilometer-Scale Numerical Weather Prediction Model

Agnieszka Barszcz Meteorological Services of Canada, Environment and Climate Change Canada, Dorval, Quebec, Canada

Search for other papers by Agnieszka Barszcz in
Current site
Google Scholar
PubMed
Close
,
Jason A. Milbrandt Meteorological Research Branch, Environment and Climate Change Canada, Dorval, Quebec, Canada

Search for other papers by Jason A. Milbrandt in
Current site
Google Scholar
PubMed
Close
, and
Julie M. Thériault Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Julie M. Thériault in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A freezing rain event, in which the Meteorological Centre of Canada’s 2.5-km numerical weather prediction system significantly underpredicted the quantity of freezing rain, is examined. The prediction system models precipitation types explicitly, directly from the Milbrandt–Yau microphysics scheme. It was determined that the freezing rain underprediction for this case was due primarily to excessive refreezing of rain, originating from melting snow and graupel, in and under the temperature inversion of the advancing warm front ultimately depleting the supply of rain reaching the surface. The refreezing was caused from excessive collisional freezing between rain and graupel. Sensitivity experiments were conducted to examine the effects of a temperature threshold for collisional freezing and on varying the values of the collection efficiencies between rain and ice-phase hydrometeors. It was shown that by reducing the rain–graupel collection efficiency and by imposing a temperature threshold of −5°C, above which collisional freezing is not permitted, excessive rain–graupel collection and graupel formation can be controlled in the microphysics scheme, leading to an improved simulation of freezing rain at the surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason A. Milbrandt, jason.milbrandt@canada.ca

Abstract

A freezing rain event, in which the Meteorological Centre of Canada’s 2.5-km numerical weather prediction system significantly underpredicted the quantity of freezing rain, is examined. The prediction system models precipitation types explicitly, directly from the Milbrandt–Yau microphysics scheme. It was determined that the freezing rain underprediction for this case was due primarily to excessive refreezing of rain, originating from melting snow and graupel, in and under the temperature inversion of the advancing warm front ultimately depleting the supply of rain reaching the surface. The refreezing was caused from excessive collisional freezing between rain and graupel. Sensitivity experiments were conducted to examine the effects of a temperature threshold for collisional freezing and on varying the values of the collection efficiencies between rain and ice-phase hydrometeors. It was shown that by reducing the rain–graupel collection efficiency and by imposing a temperature threshold of −5°C, above which collisional freezing is not permitted, excessive rain–graupel collection and graupel formation can be controlled in the microphysics scheme, leading to an improved simulation of freezing rain at the surface.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jason A. Milbrandt, jason.milbrandt@canada.ca
Save
  • Baldwin, M., R. Treadon, and S. Contorno, 1994: Precipitation type prediction using a decision tree approach with NMC’s mesoscale eta model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 30–31.

  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, https://doi.org/10.1175/WAF-D-15-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmichael, H. E., R. E. Stewart, W. Henson, and J. M. Thériault, 2011: Environmental conditions favoring ice pellet aggregation. Atmos. Res., 101, 844851, https://doi.org/10.1016/j.atmosres.2011.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caron, J. F., T. Milewski, M. Buehner, L. Fillion, M. Reszka, S. Macpherson, and J. St-James, 2015: Implementation of deterministic weather forecasting systems based on ensemble–variational data assimilation at Environment Canada. Part II: The regional system. Mon. Wea. Rev., 143, 25602580, https://doi.org/10.1175/MWR-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., J. R. Gyakum, and C. A. Lin, 2009: Observational study of wind channeling within the St. Lawrence River valley. J. Appl. Meteor. Climatol., 48, 23412361, https://doi.org/10.1175/2009JAMC2061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and W. J. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girard, C., A. Plante, M. Desgagné, R. McTaggart-Cowan, J. Côté, M. Charron, and M. Roch, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, https://doi.org/10.1175/MWR-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellet storm. Mon. Wea. Rev., 123, 31443162, https://doi.org/10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hindmarsh, J. P., A. B. Russell, and X. D. Chen, 2003: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet. Int. J. Heat Mass Transfer, 46, 11991213, https://doi.org/10.1016/S0017-9310(02)00399-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, and G. Thompson, 2017: Examination of mixed-phase precipitation forecasts from the High-Resolution Rapid Refresh model using surface observations and sounding data. Wea. Forecasting, 32, 949967, https://doi.org/10.1175/WAF-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 2006: The 15‐km version of the Canadian Regional Forecast System. Atmos.–Ocean, 44, 133149, https://doi.org/10.3137/ao.440202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manikin, G. S., 2005: An overview of precipitation type forecasting using NAM and SREF data. 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 8A.6, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94838.htm.

  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, 2016: The pan-Canadian High Resolution (2.5 km) Deterministic Prediction System. Wea. Forecasting, 31, 17911816, https://doi.org/10.1175/WAF-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snowflakes. J. Atmos. Sci., 47, 584591, https://doi.org/10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 2012: Microphysics of Clouds and Precipitation. Springer, 714 pp.

  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Preprints, Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227–230.

  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 11851195, https://doi.org/10.1175/1520-0450(2000)039<1185:TRIOWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., 2016: The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type. Wea. Forecasting, 31, 19611971, https://doi.org/10.1175/WAF-D-16-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73, 287296, https://doi.org/10.1175/1520-0477(1992)073<0287:PTITTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. M. Thériault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96, 623639, https://doi.org/10.1175/BAMS-D-14-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically-Based Modelling and Simulation of Climate and Climatic Change, M. E. Schlesinger, Ed., Springer, 433–461.

    • Crossref
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjánsson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, https://doi.org/10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508, https://doi.org/10.1175/2009JAS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 735 163 20
PDF Downloads 511 127 18