Validation of Mountain Precipitation Forecasts from the Convection-Permitting NCAR Ensemble and Operational Forecast Systems over the Western United States

Thomas M. Gowan Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by Thomas M. Gowan in
Current site
Google Scholar
PubMed
Close
,
W. James Steenburgh Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by W. James Steenburgh in
Current site
Google Scholar
PubMed
Close
, and
Craig S. Schwartz National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Craig S. Schwartz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convection-permitting ensembles can capture the large spatial variability and quantify the inherent uncertainty of precipitation in areas of complex terrain; however, such systems remain largely untested over the western United States. In this study, we assess the capabilities of deterministic and probabilistic cool-season quantitative precipitation forecasts (QPFs) produced by the 10-member, convection-permitting (3-km horizontal grid spacing) NCAR Ensemble using observations collected by SNOTEL stations at mountain locations across the western United States and precipitation analyses from PRISM. We also examine the performance of operational forecast systems run by NCEP including the High Resolution Rapid Refresh (HRRR) model, the NAM forecast system with a 3-km continental United States (CONUS) nest, GFS, and the Short-Range Ensemble Forecast system (SREF). Overall, we find that higher-resolution models, such as the HRRR, NAM-3km CONUS nest, and an individual member of the NCAR Ensemble, are more deterministically skillful than coarser models, especially over the narrow interior ranges of the western United States, likely because they better resolve topography and thus better simulate orographic precipitation. The 10-member NCAR Ensemble is also more probabilistically skillful than 13-member subensembles composed of each SREF dynamical core, but less probabilistically skillful than the full 26-member SREF, as a result of insufficient spread. These results should help guide future short-range model development and inform forecasters about the capabilities and limitations of several widely used deterministic and probabilistic modeling systems over the western United States.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Gowan, tom.gowan@utah.edu

Abstract

Convection-permitting ensembles can capture the large spatial variability and quantify the inherent uncertainty of precipitation in areas of complex terrain; however, such systems remain largely untested over the western United States. In this study, we assess the capabilities of deterministic and probabilistic cool-season quantitative precipitation forecasts (QPFs) produced by the 10-member, convection-permitting (3-km horizontal grid spacing) NCAR Ensemble using observations collected by SNOTEL stations at mountain locations across the western United States and precipitation analyses from PRISM. We also examine the performance of operational forecast systems run by NCEP including the High Resolution Rapid Refresh (HRRR) model, the NAM forecast system with a 3-km continental United States (CONUS) nest, GFS, and the Short-Range Ensemble Forecast system (SREF). Overall, we find that higher-resolution models, such as the HRRR, NAM-3km CONUS nest, and an individual member of the NCAR Ensemble, are more deterministically skillful than coarser models, especially over the narrow interior ranges of the western United States, likely because they better resolve topography and thus better simulate orographic precipitation. The 10-member NCAR Ensemble is also more probabilistically skillful than 13-member subensembles composed of each SREF dynamical core, but less probabilistically skillful than the full 26-member SREF, as a result of insufficient spread. These results should help guide future short-range model development and inform forecasters about the capabilities and limitations of several widely used deterministic and probabilistic modeling systems over the western United States.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas M. Gowan, tom.gowan@utah.edu
Save
  • Alexander, C. , S. S. Weygandt, S. G. Benjamin, T. G. Smirnova, J. M. Brown, P. Hofmann, and E. P. James , 2011: The High Resolution Rapid Refresh (HRRR): Recent and future enhancements, time-lagged ensembling, and 2010 forecast evaluation activities. 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 12B.2, https://ams.confex.com/ams/91Annual/webprogram/Paper183065.html.

  • Alexander, C. , and Coauthors, 2014: The High-Resolution Rapid Refresh (HRRR): A maturation of frequently updating convection-allowing numerical weather prediction. Extended Abstracts, World Weather Open Science Conf., Montreal, QC, Canada, CIRES/ESRL/NCEP, https://www.wmo.int/pages/prog/arep/wwrp/new/wwosc/documents/WWOSC2014_Alexander_Final.pdf.

  • Anderson, J. L. , 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L. , 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, https://doi.org/10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, A. I. , S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman , 2016: The utility of convection-permitting ensembles for the prediction of stationary convective bands. Mon. Wea. Rev., 144, 10931114, https://doi.org/10.1175/MWR-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ben Bouallègue, Z. , S. E. Theis, and C. Gebhardt , 2013: Enhancing COSMO-DE ensemble forecasts by inexpensive techniques. Meteor. Z., 22, 4959, https://doi.org/10.1127/0941-2948/2013/0374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouttier, F. , B. Vié, O. Nuissier, and L. Raynaud , 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowler, N. E. , A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare , 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, https://doi.org/10.1002/qj.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W. , 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brill, K. F. , 2009: A general analytic method for assessing sensitivity to bias of performance measures for dichotomous forecasts. Wea. Forecasting, 24, 307318, https://doi.org/10.1175/2008WAF2222144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brocker, J. , and L. A. Smith , 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, https://doi.org/10.1175/WAF993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bytheway, J. L. , and C. D. Kummerow , 2015: Toward an object-based assessment of high-resolution forecasts of long-lived convective precipitation in the central U.S. J. Adv. Model. Earth Syst., 7, 12481264, https://doi.org/10.1002/2015MS000497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. , and J. Dudhia , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , 2017: Generation of ensemble mean precipitation forecasts from convection-allowing ensembles. Wea. Forecasting, 32, 15691583, https://doi.org/10.1175/WAF-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , W. A. Gallus Jr., M. Xue, and F. Kong , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, https://doi.org/10.1175/2010MWR3624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, P. , N. Roberts, H. Lean, S. P. Ballard, and C. Charlton-Perez , 2016: Convection-permitting models: A step-change in rainfall forecasting. Meteor. Appl., 23, 165181, https://doi.org/10.1002/met.1538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A. , 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A. , M. F. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods , 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558, https://doi.org/10.1175/JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C. , R. P. Neilson, and D. L. Phillips , 1994: A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C. , M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, S. R. , G. Leoncini, N. M. Roberts, R. S. Plant, and S. Migliorini , 2014: A spatial view of ensemble spread in convection permitting ensembles. Mon. Wea. Rev., 142, 40914107, https://doi.org/10.1175/MWR-D-14-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luzio, M. , G. L. Johnson, C. Daly, J. K. Eischeid, and J. G. Arnold , 2008: Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497, https://doi.org/10.1175/2007JAMC1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J. , G. DiMego, B. Zhou, D. Jovic, B. Ferrier, and B. Yang , 2015: Short Range Ensemble Forecast (SREF) system at NCEP: Recent development and future transition. 23rd Conf. on Numerical Weather Prediction/27th Conf. on Weather Analysis and Forecasting, Chicago, IL, Amer. Meteor. Soc., 2A.5, https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273421.html.

  • Duc, L. , K. Saito, and H. Seko , 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18 171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E. , 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E. , 2008: Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, https://doi.org/10.1002/met.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B. , and R. J. Tibshirani , 1993: An Introduction to the Bootstrap. Chapman and Hall/CRC, 456 pp.

    • Crossref
    • Export Citation
  • Fassnacht, S. R. , 2004: Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA. Hydrol. Processes, 18, 34813492, https://doi.org/10.1002/hyp.5806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T. , A. J. Clark, and S. R. Dembek , 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvert, M. F. , C. P. Woods, B. A. Colle, C. F. Mass, P. V. Hobbs, M. T. Stoelinga, and J. B. Wolfe , 2005: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534, https://doi.org/10.1175/JAS3551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebhardt, C. , S. E. Theis, M. Paulat, and Z. Ben Bouallègue , 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V. , R. K. Vellore, and A. W. Huggins , 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon. Wea. Rev., 133, 28342859, https://doi.org/10.1175/MWR3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagelin, S. , J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant , 2017: The Met Office convective-scale ensemble, MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M. , 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M. , and J. Juras , 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 29052923, https://doi.org/10.1256/qj.06.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, K. A. , W. J. Steenburgh, and D. J. Onton , 2005: Model forecast improvements with decreased horizontal grid spacing over finescale intermountain orography during the 2002 Olympic Winter Games. Wea. Forecasting, 20, 558576, https://doi.org/10.1175/WAF865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J. , J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K. , and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, https://doi.org/10.1016/j.atmosres.2010.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I. , 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I. , 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jirak, I. L. , S. J. Weiss, and C. J. Melick , 2012: The SPC storm-scale ensemble of opportunity: Overview and results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 137, https://ams.confex.com/ams/26SLS/webprogram/Paper211729.html.

  • Jirak, I. L. , C. J. Melick, and S. J. Weiss , 2016: Comparison of the SPC storm-scale ensemble of opportunity to other convection-allowing ensembles for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 102, https://ams.confex.com/ams/28SLS/webprogram/Paper300910.html.

  • Johnson, A. , and X. Wang , 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 25792604, https://doi.org/10.1175/MWR-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S. , and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, W. R. , W. J. Steenburgh, T. I. Alcott, and J. J. Rutz , 2017: GEFS precipitation forecasts and the implications of statistical downscaling over the western United States. Wea. Forecasting, 32, 10071028, https://doi.org/10.1175/WAF-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N. , 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I. , 1989: Dependence of the critical success index on sample climate and threshold probability. Aust. Meteor. Mag., 37, 7581.

    • Search Google Scholar
    • Export Citation
  • Mason, I. , 2003: Binary events. Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 37–76.

  • Mass, C. F. , D. Ovens, K. Westrick, and B. A. Colle , 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C. , F. Zhang, Y. Weng, Y. Jin, H. Jin, and Q. Zhao , 2017: A multiple-model convection-permitting ensemble examination of the probabilistic prediction of tropical cyclones: Hurricanes Sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665688, https://doi.org/10.1175/WAF-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L. , and T. Yamada , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J. , S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munsell, E. B. , J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang , 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 45144532, https://doi.org/10.1175/MWR-D-14-00358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H. , 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H. , 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J. , F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. Persson , 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, D. R. , C. Bailey, K. F. Brill, P. Burke, W. A. Hogsett, R. Rausch, and M. Schichtel , 2014: Precipitation and temperature forecast performance at the Weather Prediction Center. Wea. Forecasting, 29, 489504, https://doi.org/10.1175/WAF-D-13-00066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. , and Coauthors, 2012: How well are we measuring snow?: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M. , and H. W. Lean , 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H. , 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E. , and Coauthors, 2017: Mesoscale modeling development at the National Centers for Environmental Prediction: Version 4 of the NAM forecast system and scenarios for the evolution to a high-resolution ensemble forecast system. 28th Conf. on Weather and Forecasting/24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 3B.4, https://ams.confex.com/ams/97Annual/webprogram/Paper311212.html.

  • Romine, G. S. , C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman , 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R. , and R. A. Houze , 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811830, https://doi.org/10.1002/qj.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J. , W. J. Steenburgh, and F. M. Ralph , 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J. , W. J. Steenburgh, and F. M. Ralph , 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T. , 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, https://doi.org/10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schellander-Gorgas, T. , Y. Wang, F. Meier, F. Weidle, C. Wittmann, and A. Kann , 2017: On the forecast skills of a convection-permitting ensemble. Geosci. Model Dev., 10, 3556, https://doi.org/10.5194/gmd-10-35-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S. , 2014: Reproducing the September 2013 record-breaking rainfall over the Colorado Front Range with high-resolution WRF forecasts. Wea. Forecasting, 29, 393402, https://doi.org/10.1175/WAF-D-13-00136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S. , and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S. , G. S. Romine, K. R. Smith, and M. L. Weisman , 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S. , G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman , 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C. , M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty , 1999: Characteristics of the western United States snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, https://doi.org/10.1029/1999WR900090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C. , M. P. Clark, and A. Frei , 2001: Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37, 675688, https://doi.org/10.1029/2000WR900307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B. , and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica Experiment. Bull. Amer. Meteor. Soc., 93, 15671579, https://doi.org/10.1175/BAMS-D-11-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T. , and Coauthors, 2003: Improvement of Microphysical Parameterization through Observational Verification Experiment. Bull. Amer. Meteor. Soc., 84, 18071826, https://doi.org/10.1175/BAMS-84-12-1807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I. , P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner , 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 89523 915, https://doi.org/10.1029/97JD01864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennant, W. , 2015: Improving initial condition perturbations for MOGREPS-UK. Quart. J. Roy. Meteor. Soc., 141, 23242336, https://doi.org/10.1002/qj.2524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G. , P. R. Field, R. M. Rasmussen, and W. D. Hall , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M. , 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z. , O. Talagrand, G. Candille, and Y. Zhu , 2003: Probability and ensemble forecasts. Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Sphenson, Eds., John Wiley and Sons, 137–163.

  • Trier, S. B. , G. S. Romine, D. A. Ahijevych, R. J. Trapp, R. S. Schumacher, M. C. Coniglio, and D. J. Stensrud , 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, https://doi.org/10.1175/MWR-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vié, B. , G. Molinié, O. Nuissier, B. Vincendon, V. Ducrocq, F. Bouttier, and E. Richard , 2012: Hydro-meteorological evaluation of a convection-permitting ensemble prediction system for Mediterranean heavy precipitating events. Nat. Hazards Earth Syst. Sci., 12, 26312645, https://doi.org/10.5194/nhess-12-2631-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. , C. A. Davis, W. Wang, K. W. Manning, and J. B. Klemp , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S. , 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Yang, D. , B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson , 1998: Accuracy of NWS 8” standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, https://doi.org/10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F. , and Y. Weng , 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 2533, https://doi.org/10.1175/BAMS-D-13-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1015 201 5
PDF Downloads 793 154 3