Development of a Human–Machine Mix for Forecasting Severe Convective Events

Christopher D. Karstens Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Christopher D. Karstens in
Current site
Google Scholar
PubMed
Close
,
James Correia Jr. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

Search for other papers by James Correia Jr. in
Current site
Google Scholar
PubMed
Close
,
Daphne S. LaDue Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Daphne S. LaDue in
Current site
Google Scholar
PubMed
Close
,
Jonathan Wolfe NOAA/NWS/WFO Duluth, Duluth, Minnesota

Search for other papers by Jonathan Wolfe in
Current site
Google Scholar
PubMed
Close
,
Tiffany C. Meyer Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Tiffany C. Meyer in
Current site
Google Scholar
PubMed
Close
,
David R. Harrison University of Oklahoma, Norman, Oklahoma
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David R. Harrison in
Current site
Google Scholar
PubMed
Close
,
John L. Cintineo Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by John L. Cintineo in
Current site
Google Scholar
PubMed
Close
,
Kristin M. Calhoun Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kristin M. Calhoun in
Current site
Google Scholar
PubMed
Close
,
Travis M. Smith Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Travis M. Smith in
Current site
Google Scholar
PubMed
Close
,
Alan E. Gerard NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alan E. Gerard in
Current site
Google Scholar
PubMed
Close
, and
Lans P. Rothfusz NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Lans P. Rothfusz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind) fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their potential threat in real time. The National Weather Service (NWS) provides advance warning for severe convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environmental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) with NWS forecasters and partners has yielded insights into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of information through the development of a human–machine mix. Forecasters conditionally used automated object-based guidance within four levels of automation to issue deterministic products containing PHI. Forecasters accomplished this task in a timely manner while focusing on communication and conveying forecast confidence, elements considered necessary by emergency managers. Observed annual increases in the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the prototyped software, guidance, and techniques. However, increasing usage of automation requires improvements in guidance, data integration, and data visualization to garner trust more effectively. Additional opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of subjective probability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. Karstens, chris.karstens@noaa.gov

Abstract

Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind) fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their potential threat in real time. The National Weather Service (NWS) provides advance warning for severe convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environmental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) with NWS forecasters and partners has yielded insights into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of information through the development of a human–machine mix. Forecasters conditionally used automated object-based guidance within four levels of automation to issue deterministic products containing PHI. Forecasters accomplished this task in a timely manner while focusing on communication and conveying forecast confidence, elements considered necessary by emergency managers. Observed annual increases in the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the prototyped software, guidance, and techniques. However, increasing usage of automation requires improvements in guidance, data integration, and data visualization to garner trust more effectively. Additional opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of subjective probability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher D. Karstens, chris.karstens@noaa.gov
Save
  • Andra, D. L., Jr., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ash, K. D., R. L. Schumann III, and G. C. Bowser, 2014: Tornado warning trade-offs: Evaluating choices for visually communicating risk. Wea. Climate Soc., 6, 104118, https://doi.org/10.1175/WCAS-D-13-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2006: From the 13-km RUC to the Rapid Refresh. 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 9.1, https://ams.confex.com/ams/Annual2006/techprogram/paper_104851.htm.

  • Bosart, L. F., 1989: Automation: Has its time really come? Wea. Forecasting, 4, 271, https://doi.org/10.1175/1520-0434(1989)004<0271:AHITRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 2003: Whither the weather analysis and forecasting process? Wea. Forecasting, 18, 520529, https://doi.org/10.1175/1520-0434(2003)18<520:WTWAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradshaw, J. M., R. R. Hoffman, D. D. Woods, and M. Johnson, 2013: The seven deadly myths of “autonomous systems.” IEEE Intell. Syst., 28, 5461, https://doi.org/10.1109/MIS.2013.70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. A. Maddox, 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7, 120132, https://doi.org/10.1175/1520-0434(1992)007<0120:OTUOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruick, Z. S., and C. D. Karstens, 2017: An investigation of local and national NWS warning outbreaks for severe convective events. J. Oper. Meteor., 5, 1425, https://doi.org/10.15191/nwajom.2017.0502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., and Coauthors, 2018: Cloud-to-ground lightning probabilities and warnings within an integrated warning team. Special Symp. on Impact-Based Decision Support Services, Austin, TX, Amer. Meteor. Soc., 4.4, https://ams.confex.com/ams/98Annual/webprogram/Paper329888.html.

  • Cavanaugh, D., M. Huffman, J. Dunn, and M. Fox, 2016: Connecting the dots: A communications model of the North Texas Integrated Warning Team during the 15 May 2013 tornado outbreak. Wea. Climate Soc., 8, 233245, https://doi.org/10.1175/WCAS-D-15-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., and Coauthors, 2018: The NOAA/CIMSS ProbSevere Model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Correia, J., Jr., D. LaDue, K. H. Knopfmeier, C. D. Karstens, and D. M. Wheatley, 2016: Beyond probability: Providing information to warnings forecasters using the NSSL experimental Warn-on-Forecast System for Ensembles (NEWS-e). 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 5B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper300778.html.

  • Correia, J., Jr., D. LaDue, C. D. Karstens, K. H. Knopfmeier, and D. M. Wheatley, 2018: Agile postprocessing: Towards user centered ensemble information extraction and visualization. Eighth Conf. on Transition of Research to Operations, Austin, TX, Amer. Meteor. Soc., 14B.3, https://ams.confex.com/ams/98Annual/webprogram/Paper332976.html.

  • Crandall, B., G. Klein, and R. R. Hoffman, 2006: Working Minds: A Practitioner’s Guide to Cognitive Task Analysis. The MIT Press, 332 pp.

    • Crossref
    • Export Citation
  • Daniel, A. E., J. N. Chrisman, S. D. Smith, and M. W. Miller, 2014: New WSR-88D operational techniques: Responding to recent weather events. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., 5.2, https://ams.confex.com/ams/94Annual/webprogram/Paper241216.html.

  • Deal, S. V., and R. R. Hoffman, 2010: The practitioner’s cycles, part 3: Implementation opportunities. IEEE Intell. Syst., 25, 7781, https://doi.org/10.1109/MIS.2010.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2004: Weather forecasting by humans: Heuristics and decision making. Wea. Forecasting, 19, 11151126, https://doi.org/10.1175/WAF-821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ericsson, K. A., and H. A. Simon, 1993: Protocol Analysis: Verbal Reports as Data. Rev. ed. The MIT Press, 496 pp.

    • Crossref
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, https://doi.org/10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. R., C. D. Karstens, and A. McGovern, 2018: Using machine learning techniques to predict near-term severe weather trends. 13th Symp. on Societal Applications: Policy, Research, and Practice, Austin, TX, Amer. Meteor. Soc., 11.6, https://ams.confex.com/ams/98Annual/webprogram/Paper326626.html.

  • Hart, S. G., and L. E. Staveland, 1988: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv. Psychol., 52, 139183, https://doi.org/10.1016/S0166-4115(08)62386-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044, https://doi.org/10.1175/WAF-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., 2005: Protocols for cognitive task analysis. Advanced Decision Architectures Collaborative Technology Alliance, 108 pp., www.dtic.mil/get-tr-doc/pdf?AD=ADA475456.

    • Crossref
    • Export Citation
  • Hoffman, R. R., S. V. Deal, S. Potter, and E. M. Roth, 2010: The practitioner’s cycles, part 2: Solving envisioned world problems. IEEE Intell. Syst., 25, 611, https://doi.org/10.1109/MIS.2010.89.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., M. Johnson, J. M. Bradshaw, and A. Underbrink, 2013: Trust in automation. IEEE Intell. Syst., 28, 8488, https://doi.org/10.1109/MIS.2013.24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., D. S. LaDue, H. M. Mogil, P. J. Roebber, and J. G. Trafton, 2017: Minding the Weather: How Expert Forecasters Think. The MIT Press, 470 pp.

    • Crossref
    • Export Citation
  • Istok, M. J., and Coauthors, 2009: WSR-88D dual polarization initial operational capabilities. 25th Conf. on Int. Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5, https://ams.confex.com/ams/pdfpapers/148927.pdf.

  • Joslyn, S. L., L. Nadav-Greenberg, M. U. Taing, and R. M. Nichols, 2009: The effects of wording on the understanding and use of uncertainty information in a threshold forecasting decision. Appl. Cognit. Psychol., 23, 5572, https://doi.org/10.1002/acp.1449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahneman, D., and A. Tversky, 1972: Subjective probability: A judgment of representativeness. Cognit. Psychol., 3, 430454, https://doi.org/10.1016/0010-0285(72)90016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahneman, D., and G. Klein, 2009: Conditions for intuitive expertise: A failure to disagree. Amer. Psychol., 64, 515526, https://doi.org/10.1037/a0016755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamberelis, G., and G. Dimitriadis, 2005: Focus groups. SAGE Handbook of Qualitative Research, 3rd ed. N. K. Denzin and Y. S. Lincoln, Eds., Sage, 887–907.

  • Karstens, C. D., and Coauthors, 2015: Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30, 15511570, https://doi.org/10.1175/WAF-D-14-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., and Coauthors, 2016: Evaluation of near real-time preliminary tornado damage paths. J. Oper. Meteor., 4, 132141, https://doi.org/10.15191/nwajom.2016.0410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, G., 2000: Can information technology reduce expertise? Proc. Human Performance, Situation Awareness and Automation Conf., Savannah, GA, Human Factors and Ergonomics Society, 226.

  • LaDue, D. S., P. L. Heinselman, and J. F. Newman, 2010: Strengths and limitations of current radar systems for two stakeholder groups in the southern plains. Bull. Amer. Meteor. Soc., 91, 899910, https://doi.org/10.1175/2009BAMS2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaDue, D. S., S. Ernst, C. D. Karstens, J. Correia Jr., J. E. Hocker, and J. P. Wolfe, 2016: Co-creating the form and function of the prototype probabilistic hazard information (PHI) to meet emergency manager user needs. 11th Symp. on Societal Applications: Policy, Research, and Practice, New Orleans, LA, Amer. Meteor. Soc., 7.4, https://ams.confex.com/ams/96Annual/webprogram/Paper280331.html.

  • LaDue, D. S., and Coauthors, 2017: Temporal and spatial aspects of emergency manager use of prototype Probabilistic Hazard Information. Fifth Symp. on Building a Weather-Ready Nation: Enhancing Our Nation’s Readiness, Responsiveness, and Resilience to High Impact Weather Events, Seattle, WA, Amer. Meteor. Soc., 896, https://ams.confex.com/ams/97Annual/webprogram/Paper312923.html.

  • Lagerquist, R. A., A. McGovern, and T. M. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., and T. Smith, 2010: An objective method of evaluating and devising storm-tracking algorithms. Wea. Forecasting, 25, 701709, https://doi.org/10.1175/2009WAF2222330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., K. Hondl, and R. Rabin, 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, https://doi.org/10.1175/2008JTECHA1153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., B. Herzog, and D. Kingfield, 2015: A method for extracting postevent storm tracks. J. Appl. Meteor. Climatol., 54, 451462, https://doi.org/10.1175/JAMC-D-14-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindell, M. K., S.-K. Huang, H.-L. Wei, and C. D. Samuelson, 2016: Perceptions and expected immediate reactions to tornado warning polygons. Nat. Hazards, 80, 683707, https://doi.org/10.1007/s11069-015-1990-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J., and J. Correia Jr., 2016: Insights into predicting tornado development using NEWS-e vorticity forecasts. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 15B.3, https://ams.confex.com/ams/28SLS/webprogram/Paper300761.html.

  • McGovern, A., K. L. Elmore, D. J. Gagne II, S. E. Haupt, C. D. Karstens, R. Lagerquist, T. M. Smith, and J. K. Williams, 2017: Using artificial intelligence to improve real-time decision making for high-impact weather. Bull. Amer. Meteor. Soc., 98, 20732090, https://doi.org/10.1175/BAMS-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., E. Jergensen, C. D. Karstens, H. Obermeier, and T. Smith, 2018: Real-time and climatological storm classification using machine learning. 17th Conf. on Artificial and Computational Intelligence and its Applications to the Environmental Sciences, Austin, TX, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/98Annual/webprogram/Paper326198.html.

  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757781, https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, T. C., K. M. Kuhlman, D. M. Kingfield, and D. J. Gagne II, 2016: Using random forest technique to create cloud-to-ground lightning probabilities. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 146, https://ams.confex.com/ams/28SLS/webprogram/Paper301841.html.

  • Militello, L. G., and R. J. B. Hutton, 1998: Applied cognitive task analysis (ACTA): A practitioner’s toolkit for understanding cognitive task demands. Ergonomics, 41, 16181641, https://doi.org/10.1080/001401398186108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory Tornado Detection Algorithm. Wea. Forecasting, 13, 352366, https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., J. L. Demuth, and J. K. Lazo, 2008: Communicating uncertainty in weather forecasts: A survey of the U.S. public. Wea. Forecasting, 23, 974991, https://doi.org/10.1175/2008WAF2007088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academy of Science, 2000: From Research to Operations in Weather Satellites and Numerical Weather Prediction: Crossing the Valley of Death. National Academies Press, 96 pp.

  • National Research Council, 2014: Complex Operational Decision Making in Networked Systems of Humans and Machines: A Multidisciplinary Approach. National Academies Press, 88 pp.

  • Nemunaitis-Berry, K. L., H. Obermeier, S. A. Jasko, D. LaDue, C. D. Karstens, G. M. Eosco, A. Gerard, and L. Rothfusz, 2017: Broadcast meteorologist decision-making in the 2016 Hazardous Weather Testbed Probabilistic Hazard Information Project. Fourth Conf. on Weather Warnings and Communication, Kansas City, MO, Amer., Meteor. Soc., 1.4, https://ams.confex.com/ams/45BC4WXCOMM/webprogram/Paper318190.html.

  • NOAA/NWS, 2016: NWSChat. NOAA/National Weather Service, https://nwschat.weather.gov/.

  • Obermeier, H., K. L. Nemunaitis-Berry, S. A. Jasko, D. LaDue, C. D. Karstens, G. M. Eosco, A. Gerard, and L. Rothfusz, 2017: Broadcast meteorologist decision making in the 2016 Hazardous Weather Testbed Probabilistic Hazard Information Project. 12th Symp. on Societal Applications: Policy, Research, and Practice, Seattle, WA, Amer. Meteor. Soc., 4.3, https://ams.confex.com/ams/97Annual/webprogram/Paper314239.html.

  • Perry, S. C., and Coauthors, 2016: Get your science used—Six guidelines to improve your products. USGS Circular 1419, 46 pp., https://pubs.er.usgs.gov/publication/cir1419.

  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. R. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, https://doi.org/10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L., C. D. Karstens, and D. Hilderbrand, 2014: Forecasting a continuum of environmental threats: Exploring next-generation forecasting of high impact weather. Eos, Trans. Amer. Geophys. Union, 95, 325326, https://doi.org/10.1002/2014EO360001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, R. L., K. D. Ash, and G. C. Bowser, 2017: Tornado warning perception and response: Integrating the roles of visual design, demographics, and hazard experience. Risk Anal., 38, 311322, https://doi.org/10.1111/risa.12837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, T. B., and W. Verplank, 1978: Human and computer control of undersea teleoperators. Man–Machine Systems Laboratory Tech. Rep., Department of Mechanical Engineering, Massachusetts Institute of Technology, 186 pp., http://www.dtic.mil/dtic/tr/fulltext/u2/a057655.pdf.

    • Crossref
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snellman, L. W., 1977: Operational forecasting using automated guidance. Bull. Amer. Meteor. Soc., 58, 10361044, https://doi.org/10.1175/1520-0477(1977)058<1036:OFUAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuart, N. A., and Coauthors, 2006: The future of humans in an increasingly automated forecast process. Bull. Amer. Meteor. Soc., 87, 14971502, https://doi.org/10.1175/BAMS-87-11-1497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and Coauthors, 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.

  • UCMP, 2017: A blueprint for scientific investigations. University of California Museum of Paleontology, University of California, Berkeley, https://undsci.berkeley.edu/article/0_0_0/howscienceworks_03.

  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Kuster, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, J. P., 2014: An open source approach to communicating weather risks. 10th Free and Open Source (FOSS4G) Conf., Portland, OR, Open Source Geospatial Foundation, https://av.tib.eu/media/31617.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1463 288 30
PDF Downloads 896 180 19