Multivariate Self-Organizing Map Approach to Classifying Supercell Tornado Environments Using Near-Storm, Low-Level Wind and Thermodynamic Profiles

Christopher J. Nowotarski Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Christopher J. Nowotarski in
Current site
Google Scholar
PubMed
Close
and
Erin A. Jones Department of Earth Sciences, Millersville University, Millersville, Pennsylvania

Search for other papers by Erin A. Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Self-organizing maps (SOMs) have been shown to be a useful tool in classifying meteorological data. This paper builds on earlier work employing SOMs to classify model analysis proximity soundings from the near-storm environments of tornadic and nontornadic supercell thunderstorms. A series of multivariate SOMs is produced wherein the input variables, height, dimensions, and number of SOM nodes are varied. SOMs including information regarding the near-storm wind profile are more effective in discriminating between tornadic and nontornadic storms than those limited to thermodynamic information. For the best-performing SOMs, probabilistic forecasts derived from matching near-storm environments to a SOM node may provide modest improvements in forecast skill relative to existing methods for probabilistic forecasts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Nowotarski, cjnowotarski@tamu.edu

Abstract

Self-organizing maps (SOMs) have been shown to be a useful tool in classifying meteorological data. This paper builds on earlier work employing SOMs to classify model analysis proximity soundings from the near-storm environments of tornadic and nontornadic supercell thunderstorms. A series of multivariate SOMs is produced wherein the input variables, height, dimensions, and number of SOM nodes are varied. SOMs including information regarding the near-storm wind profile are more effective in discriminating between tornadic and nontornadic storms than those limited to thermodynamic information. For the best-performing SOMs, probabilistic forecasts derived from matching near-storm environments to a SOM node may provide modest improvements in forecast skill relative to existing methods for probabilistic forecasts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Nowotarski, cjnowotarski@tamu.edu
Save
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2017: Self-organizing maps for the investigation of tornadic near-storm environments. Wea. Forecasting, 32, 14671475, https://doi.org/10.1175/WAF-D-17-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1969: An analysis of over sixty tornado proximity soundings. Preprints, 10th Conf. on Severe Local Storms, Omaha, NE, Amer. Meteor. Soc., 218–221.

  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic air-mass environment. Bull. Amer. Meteor. Soc., 33, 303307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., A. M. Thompson, and F. J. Schmidlin, 2012: Classification of Ascension Island and Natal ozonesondes using self-organizing maps. J. Geophys. Res., 117, D04302, https://doi.org/10.1029/2011JD016573.

    • Search Google Scholar
    • Export Citation
  • Jewell, R. E. D., 2010: A sounding analog system to produce probabilistic forecasts of maximum hail size. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 4B.3, https://ams.confex.com/ams/25SLS/techprogram/paper_176260.htm.

  • Kohonen, T., 1995: Self-Organizing Maps. Springer, 362 pp.

  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783801, https://doi.org/10.1175/WAF-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and A. A. Jensen, 2014: Objective classification of supercell environments using multivariate self-organizing maps for research and forecasting. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 12.B3, https://ams.confex.com/ams/27SLS/webprogram/Paper254697.html.

  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, R. M., A. M. Thompson, and G. S. Young, 2016: Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps. J. Geophys. Res. Atmos., 121, 13201329, https://doi.org/10.1002/2015JD023641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, and J. A. Hart, 2002: Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms/19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., J3.2, https://ams.confex.com/ams/pdfpapers/46942.pdf.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Togstad, W. E., J. M. Davies, S. J. Corfidi, D. R. Bright, and A. R. Dean, 2011: Conditional probability estimation for significant tornadoes based on Rapid Update Cycle (RUC) profiles. Wea. Forecasting, 26, 729743, https://doi.org/10.1175/2011WAF2222440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1526 470 41
PDF Downloads 683 209 19