Environmental Factors and Internal Processes Contributing to the Interrupted Rapid Decay of Hurricane Joaquin (2015)

Eric A. Hendricks Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Eric A. Hendricks in
Current site
Google Scholar
PubMed
Close
,
Russell L. Elsberry Department of Meteorology, Naval Postgraduate School, Monterey, California, and Trauma, Health, and Hazards Center, University of Colorado Colorado Springs, Colorado Springs, Colorado

Search for other papers by Russell L. Elsberry in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
,
Adam C. Jorgensen Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Adam C. Jorgensen in
Current site
Google Scholar
PubMed
Close
,
Mary S. Jordan Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Mary S. Jordan in
Current site
Google Scholar
PubMed
Close
, and
Robert L. Creasey Department of Meteorology, Naval Postgraduate School, Monterey, California

Search for other papers by Robert L. Creasey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The objective in this study is to demonstrate how two unique datasets from the Tropical Cyclone Intensity (TCI-15) field experiment can be used to diagnose the environmental and internal factors contributing to the interruption of the rapid decay of Hurricane Joaquin (2015) and then a subsequent 30-h period of constant intensity. A special CIMSS vertical wind shear (VWS) dataset reprocessed at 15-min intervals provides a more precise documentation of the large (~15 m s−1) VWS throughout most of the rapid decay period, and then the timing of a rapid decrease in VWS to moderate (~8 m s−1) values prior to, and following, the rapid decay period. During this period, the VWS was moderate because Joaquin was between large VWSs to the north and near-zero VWSs to the south, which is considered to be a key factor in how Joaquin was able to be sustained at hurricane intensity even though it was moving poleward over colder water. A unique dataset of High Definition Sounding System (HDSS) dropwindsondes deployed from the NASA WB-57 during the TCI-15 field experiment is utilized to calculate zero-wind centers during Joaquin center overpasses that reveal for the first time the vortex tilt structure through the entire troposphere. The HDSS datasets are also utilized to calculate the inertial stability profiles and the inner-core potential temperature anomalies in the vertical. Deeper lower-tropospheric layers of near-zero vortex tilt are correlated with stronger storm intensities, and upper-tropospheric layers with large vortex tilts due to large VWSs are correlated with weaker storm intensities.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. L. Elsberry, elsberrylr@comcast.net

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

The objective in this study is to demonstrate how two unique datasets from the Tropical Cyclone Intensity (TCI-15) field experiment can be used to diagnose the environmental and internal factors contributing to the interruption of the rapid decay of Hurricane Joaquin (2015) and then a subsequent 30-h period of constant intensity. A special CIMSS vertical wind shear (VWS) dataset reprocessed at 15-min intervals provides a more precise documentation of the large (~15 m s−1) VWS throughout most of the rapid decay period, and then the timing of a rapid decrease in VWS to moderate (~8 m s−1) values prior to, and following, the rapid decay period. During this period, the VWS was moderate because Joaquin was between large VWSs to the north and near-zero VWSs to the south, which is considered to be a key factor in how Joaquin was able to be sustained at hurricane intensity even though it was moving poleward over colder water. A unique dataset of High Definition Sounding System (HDSS) dropwindsondes deployed from the NASA WB-57 during the TCI-15 field experiment is utilized to calculate zero-wind centers during Joaquin center overpasses that reveal for the first time the vortex tilt structure through the entire troposphere. The HDSS datasets are also utilized to calculate the inertial stability profiles and the inner-core potential temperature anomalies in the vertical. Deeper lower-tropospheric layers of near-zero vortex tilt are correlated with stronger storm intensities, and upper-tropospheric layers with large vortex tilts due to large VWSs are correlated with weaker storm intensities.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. L. Elsberry, elsberrylr@comcast.net

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save
  • Berg, R., 2016: Hurricane Joaquin (AL112015). National Hurricane Center Tropical Cyclone Rep., 36 pp., http://www.nhc.noaa.gov/data/tcr/AL112015_Joaquin.pdf.

  • Black, P., L. Harrison, M. Beaubuen, R. Bluth, R. Woods, A. Penny, R. W. Smith, and J. D. Doyle, 2017: High-Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Technol., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., C. S. Velden, W. E. Bracken, J. Molinari, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, https://doi.org/10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creasey, R. L., and R. L. Elsberry, 2017: Tropical cyclone center positions from sequences of HDSS sondes deployed along high-altitude overpasses. Wea. Forecasting, 32, 317325, https://doi.org/10.1175/WAF-D-16-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallina, G. M., and C. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 3C.5, https://ams.confex.com/ams/25HURR/webprogram/Paper35650.html.

  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jorgensen, A. C., 2017: Factors contributing to the interrupted decay of Hurricane Joaquin (2015) in a moderate vertical wind shear environment. M.S. thesis, Dept. of Meteorology, Naval Postgraduate School, 96 pp., https://calhoun.nps.edu/handle/10945/55632.

  • Park, M. S., R. L. Elsberry, and P. A. Harr, 2012: Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. Cyclone Res. Rev., 1, 448457, https://doi.org/10.6057/2012TCRR04.03.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177194, https://doi.org/10.1175/2009JAS2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Wea. Forecasting, 29, 11691180, https://doi.org/10.1175/WAF-D-13-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, https://doi.org/10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, https://doi.org/10.1002/2015GL066697.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3162 2565 142
PDF Downloads 275 46 2