Rapid-Scan Radar Observations of an Oklahoma Tornadic Hailstorm Producing Giant Hail

Arthur Witt NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Arthur Witt in
Current site
Google Scholar
PubMed
Close
,
Donald W. Burgess Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Donald W. Burgess in
Current site
Google Scholar
PubMed
Close
,
Anton Seimon Department of Geography and Planning, Appalachian State University, Boone, North Carolina

Search for other papers by Anton Seimon in
Current site
Google Scholar
PubMed
Close
,
John T. Allen Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. Snyder Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
, and
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rapid-scan radar observations of a supercell that produced near-record size hail in Oklahoma are examined. Data from the National Weather Radar Testbed Phased Array Radar (PAR) in Norman, Oklahoma, are used to study the overall character and evolution of the storm. Data from the nearby polarimetric KOUN WSR-88D and rapid-scanning X-band polarimetric (RaXPol) mobile radar are used to study the evolution of low- to midaltitude dual-polarization parameters above two locations where giant hailstones up to 16 cm in diameter were observed. The PAR observation of the supercell’s maximum storm-top divergent outflow is similar to the strongest previously documented value. The storm’s mesocyclone rotational velocity at midaltitudes reached a maximum that is more than double the median value for similar observations from other storms producing giant hail. For the two storm-relative areas where giant hail was observed, noteworthy findings include 1) the giant hail occurred outside the main precipitation core, in areas with low-altitude reflectivities of 40–50 dBZ; 2) the giant hail was associated with dual-polarization signatures consistent with past observations of large hail at 10-cm wavelength, namely, low ZDR, low ρHV, and low KDP; 3) the giant hail fell along both the northeast and southwest edges of the primary updraft at ranges of 6–10 km from the updraft center; and 4) with the exception of one isolated report, the giant hail fell to the northeast and northwest of the large tornado and the parent mesocyclone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arthur Witt, arthur.witt@noaa.gov

Abstract

Rapid-scan radar observations of a supercell that produced near-record size hail in Oklahoma are examined. Data from the National Weather Radar Testbed Phased Array Radar (PAR) in Norman, Oklahoma, are used to study the overall character and evolution of the storm. Data from the nearby polarimetric KOUN WSR-88D and rapid-scanning X-band polarimetric (RaXPol) mobile radar are used to study the evolution of low- to midaltitude dual-polarization parameters above two locations where giant hailstones up to 16 cm in diameter were observed. The PAR observation of the supercell’s maximum storm-top divergent outflow is similar to the strongest previously documented value. The storm’s mesocyclone rotational velocity at midaltitudes reached a maximum that is more than double the median value for similar observations from other storms producing giant hail. For the two storm-relative areas where giant hail was observed, noteworthy findings include 1) the giant hail occurred outside the main precipitation core, in areas with low-altitude reflectivities of 40–50 dBZ; 2) the giant hail was associated with dual-polarization signatures consistent with past observations of large hail at 10-cm wavelength, namely, low ZDR, low ρHV, and low KDP; 3) the giant hail fell along both the northeast and southwest edges of the primary updraft at ranges of 6–10 km from the updraft center; and 4) with the exception of one isolated report, the giant hail fell to the northeast and northwest of the large tornado and the parent mesocyclone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Arthur Witt, arthur.witt@noaa.gov
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and J. W. Leighton, 2012: Creating high-resolution hail datasets using social media and post-storm ground surveys. Electron. J. Oper. Meteor., 13, 3245.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), http://www.ejssm.org/ojs/index.php/ejssm/article/view/87.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., J. M. Laflin, J. W. Leighton, and D. R. Deroche, 2012: S-band polarimetric analysis of the 23 May 2011 Oklahoma record hailstorm using high-resolution observations during HailSTONE. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 16.6, https://ams.confex.com/ams/26SLS/webprogram/Paper211473.html.

  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and V. T. Wood, 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere edition. NOAA Tech. Rep., 61 pp., https://www.nssl.noaa.gov/publications/dopplerguide/Doppler%20Guide%202nd%20Ed.pdf.

  • Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–47, https://doi.org/10.1007/978-1-935704-30-0.

    • Crossref
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2009: Increasing major hail losses in the U.S. Climatic Change, 96, 161166, https://doi.org/10.1007/s10584-009-9597-z.

  • Changnon, S. A., and J. Burroughs, 2003: The tristate hailstorm: The most costly on record. Mon. Wea. Rev., 131, 17341739, https://doi.org/10.1175//2549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172, https://doi.org/10.1029/GM079p0161.

    • Crossref
    • Export Citation
  • Fabry, F., 2015: Radar Meteorology: Principles and Practice. Cambridge University Press, 272 pp., https://doi.org/10.1017/CBO9781107707405.

    • Crossref
    • Export Citation
  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, https://doi.org/10.15191/nwajom.2013.0119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., J. Snyder, A. V. Ryzhkov, D. S. Zrnić, S. Frasher, and H. B. Bluestein, 2008: Comparison of polarimetric radar observations of tornadic supercells at S, C, and X bands. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.5, https://ams.confex.com/ams/24SLS/techprogram/paper_142020.htm.

  • Kuster, C. M., P. L. Heinselman, and M. Austin, 2015: 31 May 2013 El Reno tornadoes: Advantages of rapid-scan phased-array radar data from a warning forecaster’s perspective. Wea. Forecasting, 30, 933956, https://doi.org/10.1175/WAF-D-14-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and D. W. Burgess, 1980: Magnitude and implications of high speed outflow at severe storm summits. Preprints, 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 364–368.

  • Markowski, P., and Y. Richardson, 2014: What we know and don’t know about tornado formation. Phys. Today, 67, 2631, https://doi.org/10.1063/PT.3.2514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2013: Storm data. Accessed 24 July 2018, https://www.ncdc.noaa.gov/IPS/sd/sd.html.

  • National Weather Service, 2014: Service assessment: May 2013 Oklahoma tornadoes and flash flooding. NWS Tech. Rep., 63 pp., https://www.weather.gov/media/publications/assessments/13oklahoma_tornadoes.pdf.

  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, C. D., C. A. V. D. Broeke, L. R. Lemon, and P. T. Schlatter, 2010: Polarimetric radar characteristics of a supercell hailstorm on 10 May 2010 in central Oklahoma. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.7, https://ams.confex.com/ams/25SLS/techprogram/Paper_175763.htm.

  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, https://doi.org/10.1175/MWR-D-11-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pojorlie, K. L., S. Doering, and M. A. Fowle, 2013: The record-breaking Vivian, South Dakota, hailstorm of 23 July 2010. J. Oper. Meteor., 1, 318, https://doi.org/10.15191/nwajom.2013.0102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 24062421, https://doi.org/10.1175/1520-0493(1998)126<2406:VISMPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A new approach for collation and display of storm chaser imagery for scientific applications. Bull. Amer. Meteor. Soc., 97, 20692084, https://doi.org/10.1175/BAMS-D-15-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, T. J., T. M. Blackman, and A. J. Illingworth, 1999: Observations of oblate hail using dual polarization radar and implications for hail-detection schemes. Quart. J. Roy. Meteor. Soc., 125, 9931016, https://doi.org/10.1002/qj.49712555512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, https://doi.org/10.1175/2010JTECHA1356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, H. B. Bluestein, and S. F. Blair, 2014: Polarimetric analysis of two giant-hail-producing supercells observed by X-band and S-band radars. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 166, https://ams.confex.com/ams/27SLS/webprogram/Paper255455.html.

  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, D. T. Dawson II, and Y. Jung, 2017: Simulations of polarimetric, X-band radar signatures in supercells. Part I: Description of experiment and simulated ρHV rings. J. Appl. Meteor. Climatol., 56, 19771999, https://doi.org/10.1175/JAMC-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, https://doi.org/10.1175/WAF-D-15-0111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuras, D., 2010: Hail no: An account of the worlds biggest, deadliest hailstorms. Atlas Obscura, accessed 24 July 2018, http://www.atlasobscura.com/articles/hail-no-an-account-of-the-worlds-biggest-deadliest-hailstorms.

  • Torres, S. M., and Coauthors, 2016: Adaptive-weather-surveillance and multifunction capabilities of the National Weather Radar Testbed phased array radar. Proc. IEEE, 104, 660672, https://doi.org/10.1109/JPROC.2015.2484288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., 1996: The relationship between low-elevation WSR-88D reflectivity and hail at the ground using precipitation observations from the VORTEX project. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 183–185.

  • Witt, A., 1998: The relationship between WSR-88D measured midaltitude rotation and maximum hail size. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 740–743.

  • Witt, A., 2014: High-resolution phased array radar observations of an Oklahoma hailstorm producing extremely-large hail. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 165, https://ams.confex.com/ams/27SLS/webprogram/Paper253994.html.

  • Witt, A., and S. P. Nelson, 1991: The use of single-Doppler radar for estimating maximum hailstone size. J. Appl. Meteor., 30, 425431, https://doi.org/10.1175/1520-0450(1991)030<0425:TUOSDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., D. W. Burgess, A. Seimon, and J. T. Allen, 2015: Rapid-scan dual-polarization WSR-88D observations of an Oklahoma hailstorm producing extremely-large hail. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 134, https://ams.confex.com/ams/37RADAR/webprogram/Paper275689.html.

  • Wurman, J., K. Kosiba, and P. Robinson, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3649 2704 88
PDF Downloads 1150 280 14