Impacts of Modifications to a Local Planetary Boundary Layer Scheme on Forecasts of the Great Plains Low-Level Jet Environment

David E. Jahn Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by David E. Jahn in
Current site
Google Scholar
PubMed
Close
and
William A. Gallus Jr. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Search for other papers by William A. Gallus Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David E. Jahn, djahn@iastate.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David E. Jahn, djahn@iastate.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. 2016: FP3 Ellis, KS, radiosonde data, version 2.0. Earth Observing Laboratory, UCAR–NCAR, accessed 9 August 2016, https://doi.org/10.5065/D6GM85DZ.

    • Crossref
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, H. E. Brooks, and I. L. Jirak, 2017: Evaluation of multiple planetary boundary layer parameterization schemes in southeast U.S. cold season severe thunderstorm environments. Wea. Forecasting, 32, 18571884, https://doi.org/10.1175/WAF-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night Field Project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghasemi, A., and S. Zahediasl, 2012: Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab., 10, 486489, https://doi.org/10.5812/ijem.3505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, https://doi.org/10.1007/s10546-012-9771-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdridge, D., and D. Turner, 2015: FP6 Hesston, KS, radiosonde data, version 1.0. Earth Observing Laboratory, UCAR/NCAR, accessed 9 August 2016, https://doi.org/10.5065/D6765CD0.

    • Crossref
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311843, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, https://doi.org/10.1002/jgrd.50823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, D. E., E. S. Takle, and W. A. Gallus Jr., 2017a: Improving wind-ramp forecasts in the stable boundary layer. Bound.-Layer Meteor., 163, 423446, https://doi.org/10.1007/s10546-017-0237-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, D. E., E. S. Takle, and W. A. Gallus Jr., 2017b: Wind-ramp-forecast sensitivity to boundary-layer scheme closure parameters. Bound.-Layer Meteor., 164, 475490, https://doi.org/10.1007/s10546-017-0250-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleczek, M. A., G.-J. Steeneveld, and A. A. M. Holtslag, 2014: Evaluation of the Weather Research and Forecast mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up. Bound.-Layer Meteor., 152, 213243, https://doi.org/10.1007/s10546-014-9925-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, A. Shapiro, and M. Xue, 2016: Linkages between boundary-layer structure and the development of nocturnal low-level jets in central Oklahoma. Bound.-Layer Meteor., 158, 383408, https://doi.org/10.1007/s10546-015-0097-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milovac, J., K. Warrach-Sagi, A. Behrendt, F. Späth, J. Ingwersen, and V. Wulfmeyer, 2016: Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. J. Geophys. Res. Atmos., 121, 624649, https://doi.org/10.1002/2015JD023927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated model for the long-wave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmengler, M., F. D. Costa, O. C. Acevedo, F. S. Puhales, G. Demarco, L. G. N. Martins, and L. E. Medeiros, 2015: Comparison of mixing length formulations in a single-column model simulation for a very stable site. Amer. J. Environ. Eng., 5, 106118, https://doi.org/10.5923/s.ajee.201501.14.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Squitieri, B. J., and W. A. Gallus Jr., 2016: WRF forecasts of Great Plains nocturnal low-level jet-driven MCSs. Part I: Correlation between low-level jet forecast accuracy and MCS precipitation forecast skill. Wea. Forecasting, 31, 13011323, https://doi.org/10.1175/WAF-D-15-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, https://doi.org/10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351, https://doi.org/10.1175/JAS-D-11-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR–NCAR, 2016a: FP4 NCAR/EOL QC soundings, version 2.0. Earth Observing Laboratory, UCAR–NCAR, accessed 9 August 2016, https://doi.org/10.5065/D63776XH.

    • Crossref
    • Export Citation
  • UCAR–NCAR, 2016b: FP5 NCAR/EOL soundings, version 2.0. Earth Observing Laboratory, UCAR–NCAR, accessed 9 August 2016, https://doi.org/10.5065/D6ZG6QF7.

    • Crossref
    • Export Citation
  • Vermeesch, K. 2015: FP2 Greensburg, KS, radiosonde data, version 1.0. Earth Observing Laboratory, accessed 9 August 2016, UCAR/NCAR, https://doi.org/10.5065/D6FQ9TPH.

    • Crossref
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part II: The synoptic and subsynoptic-scale environment. Wea. Forecasting, 16, 531551, https://doi.org/10.1175/1520-0434(2001)016<0531:ACOWSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S. Y., and T. C. Chen, 2009: The late-spring maximum of rainfall over the U.S. central plains and the role of the low-level jet. J. Climate, 22, 46964709, https://doi.org/10.1175/2009JCLI2719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, https://doi.org/10.1007/s10546-007-9189-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1128 807 43
PDF Downloads 349 91 5