The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery

Kristopher Bedka Science Directorate, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kristopher Bedka in
Current site
Google Scholar
PubMed
Close
,
Elisa M. Murillo School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Elisa M. Murillo in
Current site
Google Scholar
PubMed
Close
,
Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
,
Benjamin Scarino Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Benjamin Scarino in
Current site
Google Scholar
PubMed
Close
, and
Haiden Mersiovsky Department of Meteorology, Florida State University, Tallahassee, Florida

Search for other papers by Haiden Mersiovsky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intense tropopause-penetrating updrafts and gravity wave breaking generate cirrus plumes that reside above the primary anvil. These “above anvil cirrus plumes” (AACPs) exhibit unique temperature and reflectance patterns in satellite imagery, best recognized within 1-min “super rapid scan” observations. AACPs are often evident during severe weather outbreaks and, due to their importance, have been studied for 35+ years. Despite this research, there is uncertainty regarding why some storms produce AACPs but other nearby storms do not, exactly how severe are storms with AACPs, and how AACP identification can assist with severe weather warning. These uncertainties are addressed through analysis of severe weather reports, NOAA/National Weather Service (NWS) severe weather warnings, metrics of updraft cloud height, intensity, and rotation derived from Doppler radars, as well as ground-based total lightning observations for 4583 storms observed by GOES super rapid scanning, 405 of which produced an AACP. Datasets are accumulated throughout storm lifetimes through radar object tracking. It is found that 1) AACP storms generated 14 times the number of reports per storm compared to non-AACP storms; 2) AACPs appeared, on average, 31 min in advance of severe weather; 3) 73% of significant severe weather reports were produced by AACP storms; 4) AACP recognition can provide comparable warning lead time to that provided by a forecaster; and 5) the presence of an AACP can increase forecaster confidence that large hail will occur. Given that AACPs occur throughout the world, and most of the world is not observed by Doppler radar, AACP-based severe storm identification and warning would be extremely helpful for protecting lives and property.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristopher Bedka, kristopher.m.bedka@nasa.gov

Abstract

Intense tropopause-penetrating updrafts and gravity wave breaking generate cirrus plumes that reside above the primary anvil. These “above anvil cirrus plumes” (AACPs) exhibit unique temperature and reflectance patterns in satellite imagery, best recognized within 1-min “super rapid scan” observations. AACPs are often evident during severe weather outbreaks and, due to their importance, have been studied for 35+ years. Despite this research, there is uncertainty regarding why some storms produce AACPs but other nearby storms do not, exactly how severe are storms with AACPs, and how AACP identification can assist with severe weather warning. These uncertainties are addressed through analysis of severe weather reports, NOAA/National Weather Service (NWS) severe weather warnings, metrics of updraft cloud height, intensity, and rotation derived from Doppler radars, as well as ground-based total lightning observations for 4583 storms observed by GOES super rapid scanning, 405 of which produced an AACP. Datasets are accumulated throughout storm lifetimes through radar object tracking. It is found that 1) AACP storms generated 14 times the number of reports per storm compared to non-AACP storms; 2) AACPs appeared, on average, 31 min in advance of severe weather; 3) 73% of significant severe weather reports were produced by AACP storms; 4) AACP recognition can provide comparable warning lead time to that provided by a forecaster; and 5) the presence of an AACP can increase forecaster confidence that large hail will occur. Given that AACPs occur throughout the world, and most of the world is not observed by Doppler radar, AACP-based severe storm identification and warning would be extremely helpful for protecting lives and property.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristopher Bedka, kristopher.m.bedka@nasa.gov
Save
  • Achtor, T., T. Rink, R. Whittaker, D. Parker, and D. Santek, 2008: McIDAS-V: A Powerful data analysis and visualization tool for multi and hyperspectral environmental satellite data. Proc. SPIE, 7085, 708509, https://doi.org/10.1117/12.795223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, D. D. Fenn, G. Szejwach, and W. E. Shenk, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., and Coauthors, 2017: Stratospheric ozone over United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis. Proc. Natl. Acad. Sci. USA, 114, E4905E4913, https://doi.org/10.1073/pnas.1619318114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apke, J. M., J. R. Mecikalski, and C. P. Jewett, 2016: Analysis of mesoscale atmospheric flows above mature deep convection using super rapid scan geostationary satellite data. J. Appl. Meteor. Climatol., 55, 18591887, https://doi.org/10.1175/JAMC-D-15-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apke, J. M., J. R. Mecikalski, K. M. Bedka, E. W. McCaul, C. R. Homeyer, and C. P. Jewett, 2018: Relationships between deep convection updraft characteristics and satellite based Super Rapid Scan mesoscale atmospheric motion vector derived flow. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-18-0119.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and K. Khlopenkov, 2016: A probabilistic pattern recognition method for detection of overshooting cloud tops using satellite imager data. J. Appl. Meteor. Climatol., 55, 19832005, https://doi.org/10.1175/JAMC-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., J. Brunner, and W. Feltz, 2011: Overshooting top and enhanced-V signature detection for the GOES-R Advanced Baseline Imager. Algorithm Theoretical Basis Document, NOAA/NESDIS/Center for Satellite Applications and Research, 75 pp., http://clouds.larc.nasa.gov/site/people/data/kbedka/GOES-R_ABI_ATBD_OvershootingTop_Enhanced-V_100perc.doc.

  • Bedka, K. M., C. Wang, R. Rogers, L. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 Super Rapid Scan datasets. Wea. Forecasting, 30, 571590, https://doi.org/10.1175/WAF-D-14-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Erickson, and H. Brooks, 2011: A 5-yr climatology of tornado false alarms. Wea. Forecasting, 26, 534544, https://doi.org/10.1175/WAF-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. J. Donaldson, 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533545, https://doi.org/10.1175/1520-0469(1963)020<0533:AASOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cappucci, M., 2018: Giant hail pummeled an Argentine city Thursday, possibly a Southern Hemisphere record. Washington Post, 9 February, https://www.washingtonpost.com/news/capital-weather-gang/wp/2018/02/09/hail-larger-than-softballs-pummeled-an-argentina-city-on-thursday/?utm_term=.ed22ac0a62e8.

  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger, 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 20092023, https://doi.org/10.1175/JAMC-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooney, J. W., K. P. Bowman, C. R. Homeyer, and T. M. Fenske, 2018: Ten year analysis of tropopause-overshooting convection using GridRad data. J. Geophys. Res. Atmos., 123, 329343, https://doi.org/10.1002/2017JD027718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys., Union, 161–172, https://dx.doi.org/10.1029/GM079p0161.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and W. A. Gallus Jr., 2010: Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Wea. Forecasting, 25, 190206, https://doi.org/10.1175/2009WAF2222338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dworak, R., K. M. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, https://doi.org/10.1175/WAF-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 18251845, https://doi.org/10.1175/JAMC-D-17-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2018: Best practices for RGB compositing of multi-spectral imagery. User Service Division, EUMETSAT, 8 pp., http://oiswww.eumetsat.int/~idds/html/doc/best_practices.pdf.

  • Fujita, T., 1958: Mesoanalysis of the Illinois tornadoes of 9 April 1953. J. Meteor., 15, 288296, https://doi.org/10.1175/1520-0469(1958)015<0288:MOTITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1974: Overshooting thunderheads observed from ATS and Learjet. Satellite and Mesometeorology Research Project Rep. 117, Texas Tech University, Lubbock, TX, 29 pp.

  • Fujita, T., 1982: Principle of stereographic height computations and their application to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368, https://doi.org/10.2151/jmsj1965.60.1_355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–168.

  • Heymsfield, G. M., R. H. Blackmer, and S. Schotz, 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D radar (GridRad) dataset. University of Oklahoma–Texas A&M University, 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Homeyer, C. R., K. P. Bowman, and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from high‐resolution sounding data. J. Geophys. Res., 115, D13108, https://doi.org/10.1029/2009JD013664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iowa State University, 2018a: Archived NWS watch/warnings. Iowa Environmental Mesonet, Iowa State University, https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml.

  • Iowa State University, 2018b: 2017 [KSJT] SAN_ANGELO severe thunderstorm (SV) warning (W) number 77. Iowa Environmental Mesonet, Iowa State University, https://mesonet.agron.iastate.edu/vtec/#2017-O-NEW-KSJT-SV-W-0077/USCOMP-N0Q-201705190000.

  • Iršič Žibert, M., and J. Žibert, 2013: Monitoring and automatic detection of the cold-ring patterns atop deep convective clouds using Meteosat data. Atmos. Res., 123, 281292, https://doi.org/10.1016/j.atmosres.2012.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., R. Ware, H. Jiang, and Y. Xie, 2016: Rapid mesoscale environmental changes accompanying genesis of an unusual tornado. Wea. Forecasting, 31, 763786, https://doi.org/10.1175/WAF-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunz, M., U. Blahak, J. Handwerker, M. Schmidberger, H. J. Punge, S. Mohr, E. Fluck, and K. M. Bedka, 2018: The severe hailstorm in southwest Germany on 28 July 2013: Characteristics, impacts and meteorological conditions. Quart. J. Roy. Meteor. Soc., 144, 231250, https://doi.org/10.1002/qj.3197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80, 271284, https://doi.org/10.1175/1520-0477(1999)080<0271:TMCIDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenz, A., K. M. Bedka, W. F. Feltz, and S. A. Ackerman, 2009: Convectively-induced transverse band signatures in satellite imagery. Wea. Forecasting, 24, 13621373, https://doi.org/10.1175/2009WAF2222285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and M. Setvák, 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, https://doi.org/10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and M. J. Bunkers, 2005: Observations of a severe, left-moving supercell on 4 May 2003. Wea. Forecasting, 20, 1522, https://doi.org/10.1175/WAF-830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. W. Hillger, L. Grasso, J. A. Knaff, and J. F. Dostalek, 2006: GOES climatology and analysis of thunderstorms with enhanced 3.9-μm reflectivity. Mon. Wea. Rev., 134, 23422353, https://doi.org/10.1175/MWR3211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Line, W. E., T. J. Schmit, D. T. Lindsey, and S. J. Goodman, 2016: Use of geostationary super rapid scan satellite imagery by the Storm Prediction Center. Wea. Forecasting, 31, 483494, https://doi.org/10.1175/WAF-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and S. Heckman, 2010: The application of total lightning detection and cell tracking for severe weather prediction. Technical Conf. on Meteorology and Environmental Instruments and Methods of Observation, Helsinki, Finland, WMO, https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P2_7_Heckman_USA.pdf.

  • Liu, C., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, https://doi.org/10.1029/2012JB009290.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., M. Valachová, and P. Zacharov, 2013: Upper tropospheric conditions in relation to the cloud top features of 15 August 2010 convective storms. Atmos. Res., 123, 249267, https://doi.org/10.1016/j.atmosres.2012.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, https://doi.org/10.1029/2007JD008600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandmæl, T. N., 2017: An evaluation of radar- and satellite-data based products to discriminate between tornadic and non-tornadic storms. School of Meteorology, University of Oklahoma, 98 pp., https://hdl.handle.net/11244/52775.

  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. Li, S. Bachmeier, and J. J. Gurka, 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, https://doi.org/10.1175/BAMS-86-8-1079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and Coauthors, 2014: GOES-14 Super Rapid Scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, https://doi.org/10.1117/1.JRS.7.073462.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, https://doi.org/10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and C. A. Doswell III, 1991: The AVHRR channel 3 cloud top reflectivity of convective storms. Mon. Wea. Rev., 119, 841847, https://doi.org/10.1175/1520-0493(1991)119<0841:TACCTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvat, J. Stastka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, https://doi.org/10.1016/j.atmosres.2012.06.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. B., and Coauthors, 2017: A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States. J. Geophys. Res. Atmos., 122, 95299554, https://doi.org/10.1002/2017JD026831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, D. L., K. P. Bowman, and C. R. Homeyer, 2016: Tropopause-penetrating convection from three-dimensional gridded NEXRAD data. J. Appl. Meteor. Climatol., 55, 465478, https://doi.org/10.1175/JAMC-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm Labeling in Three Dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145, 11271145, https://doi.org/10.1175/MWR-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, https://doi.org/10.1175/WAF864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., K.-Y. Cheng, M. Setvák, and C.-K. Wang, 2016: The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos., 121, 37293738, https://doi.org/10.1002/2015JD024111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yost, C. R., and Coauthors, 2018: A prototype method for diagnosing high ice water content probability using satellite imager data. Atmos. Meas. Tech., 11, 16151637, https://doi.org/10.5194/amt-11-1615-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8294 2399 210
PDF Downloads 4384 904 115