Multiweek Prediction Skill Assessment of Arctic Sea Ice Variability in the CFSv2

Yanyun Liu INNOVIM, LLC, Greenbelt, and NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Yanyun Liu in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
, and
Arun Kumar NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Skillful Arctic Sea ice prediction is becoming increasingly important because of its societal, industrial, and economic impacts over the polar regions and potential influence on lower-latitude weather and climate variability. In this work, we evaluate the multiweek forecast skill of Arctic sea ice using the Climate Forecast System, version 2 (CFSv2). To the authors’ knowledge, this is the first effort to diagnose and assess the skill of multiweek Arctic sea ice prediction from a coupled atmosphere–ocean model. Analysis of a suite of retrospective 45-day forecasts spanning 1999–2015 shows that CFSv2 captures general features of sea ice concentration (SIC) variability. Total SIC variability is dominated by interannual variability, which accounts for more than 60% of the total variance. Submonthly variability accounts for 29% of the total variance in December, 20% in March and June, and 12.5% in September. We assess the ability of CFSv2 to predict the pan-Arctic SIC, as well as regional SIC in nine Arctic regions. Results show that the SIC prediction skill is highly region dependent (e.g., higher prediction skill for Kara/Barents Seas and lower for the Canadian Archipelago). Overall, the maximum anomaly correlation coefficient (ACC) of SIC for both melt and freeze-up seasons is near the marginal zones, and their spatial distribution shows a relationship with the distribution of the variance. If the ACC of 0.5 is taken as the critical value for skillful prediction, the predictability of weekly SIC near the marginal zones is about 5–6 weeks. Prediction skill for Arctic sea ice extent is above 0.6 for the entire six target weeks and has a large contribution from interannual variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanyun Liu, yanyun.liu@noaa.gov

Abstract

Skillful Arctic Sea ice prediction is becoming increasingly important because of its societal, industrial, and economic impacts over the polar regions and potential influence on lower-latitude weather and climate variability. In this work, we evaluate the multiweek forecast skill of Arctic sea ice using the Climate Forecast System, version 2 (CFSv2). To the authors’ knowledge, this is the first effort to diagnose and assess the skill of multiweek Arctic sea ice prediction from a coupled atmosphere–ocean model. Analysis of a suite of retrospective 45-day forecasts spanning 1999–2015 shows that CFSv2 captures general features of sea ice concentration (SIC) variability. Total SIC variability is dominated by interannual variability, which accounts for more than 60% of the total variance. Submonthly variability accounts for 29% of the total variance in December, 20% in March and June, and 12.5% in September. We assess the ability of CFSv2 to predict the pan-Arctic SIC, as well as regional SIC in nine Arctic regions. Results show that the SIC prediction skill is highly region dependent (e.g., higher prediction skill for Kara/Barents Seas and lower for the Canadian Archipelago). Overall, the maximum anomaly correlation coefficient (ACC) of SIC for both melt and freeze-up seasons is near the marginal zones, and their spatial distribution shows a relationship with the distribution of the variance. If the ACC of 0.5 is taken as the critical value for skillful prediction, the predictability of weekly SIC near the marginal zones is about 5–6 weeks. Prediction skill for Arctic sea ice extent is above 0.6 for the entire six target weeks and has a large contribution from interannual variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanyun Liu, yanyun.liu@noaa.gov
Save
  • Bitz, C. M., D. S. Battisti, R. E. Moritz, and J. A. Beesley, 1996: Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J. Climate, 9, 394408, https://doi.org/10.1175/1520-0442(1996)009<0394:LFVITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and C. M. Bitz, 2014: Characteristics of Arctic sea-ice thickness variability in GCMs. J. Climate, 27, 82448258, https://doi.org/10.1175/JCLI-D-14-00345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard-Wrigglesworth, E., and Coauthors, 2016: Multi-model seasonal forecast of Arctic sea-ice: Forecast uncertainty at pan-Arctic and regional scales. Climate Dyn., 49, 13991410, https://doi.org/10.1007/s00382-016-3388-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budikova, D., 2009: Role of Arctic sea ice in global atmospheric circulation. Global Planet. Change, 68, 149163, https://doi.org/10.1016/j.gloplacha.2009.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, 2017: Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett., 44, 49534964, https://doi.org/10.1002/2017GL073155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J. C., P. Parkinson, H. J. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. National Snow and Ice Data Center, Boulder, CO, accessed 31 May 2017, http://nsidc.org/data/nsidc-0051.html.

  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevallier, M., D. Salas-Mélia, A. Voldoire, M. Déqué, and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, https://doi.org/10.1175/JCLI-D-12-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, https://doi.org/10.1175/MWR-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, and A. Kumar, 2018: Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2. Adv. Atmos. Sci., 35, 1426, https://doi.org/10.1007/s00376-017-6294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. Walsh, and M. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, https://doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., 2007: Using remote sensing data to develop seasonal outlooks for Arctic regional sea-ice minimum extent. Remote Sens. Environ., 111, 136157, https://doi.org/10.1016/j.rse.2007.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks: Its relation to atmospheric forcing. J. Climate, 7, 18971913, https://doi.org/10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. National Snow and Ice Data Center, Boulder, CO, accessed 31 May 2017, http://nsidc.org/data/nsidc-0051.html.

  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, 342 pp., https://www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf.

  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D. A., R. A. Allard, E. J. Metzger, P. G. Posey, R. H. Preller, A. J. Wallcraft, M. W. Phelps, and O. M. Smedstad, 2015: Short‐term sea ice forecasting: An assessment of ice concentration and ice drift forecasts using the U.S. Navy’s Arctic Cap Nowcast/Forecast System. J. Geophys. Res. Oceans, 120, 83278345, https://doi.org/10.1002/2015JC011283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., B. S. Barrett, and D. M. Lafleur, 2014: Arctic sea ice and the Madden–Julian oscillation (MJO). Climate Dyn., 43, 21852196, https://doi.org/10.1007/s00382-013-2043-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. King, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759752, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., 2009: Finite samples and uncertainty estimates for skill measures for seasonal predictions. Mon. Wea. Rev., 137, 26222631, https://doi.org/10.1175/2009MWR2814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, https://doi.org/10.1029/2010GL045022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemieux, J.-F., and Coauthors, 2016: The Regional Ice Prediction System (RIPS): Verification of forecast sea ice concentration. Quart. J. Roy. Meteor. Soc., 142, 632643, https://doi.org/10.1002/qj.2526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, https://doi.org/10.1029/2008GL035205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay R. W., J. Zhang, A. J. Schweiger, and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, https://doi.org/10.1029/2007JC004259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markus, T., and D. J. Cavalieri, 2000: An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sensing, 38, 13871398, https://doi.org/10.1109/36.843033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBean, G., and Coauthors, 2005: Arctic climate—Past and present. Arctic Climate Impact Assessment— Scientific Report, Cambridge University Press, 22–60.

  • McCusker, K. E., J. Fyfe, and M. Sigmond, 2016: Twenty‐five winters of unexpected Eurasian cooling unlikely due to Arctic sea‐ice loss. Nat. Geosci., 9, 838842, https://doi.org/10.1038/ngeo2820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., W.-S. Lee, W. Wang, M. Chen, and A. Kumar, 2013: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, https://doi.org/10.1002/grl.50317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., and S. A. Venegas, 1998: Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere–ice–ocean interactions. Geophys. Res. Lett., 25, 36073610, https://doi.org/10.1029/98GL02782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., F. A. Haumann, H. Haak, J. H. Jungclaus, and J. Marotzke, 2013: Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s Earth system model. J. Adv. Model. Earth Syst., 5, 173194, https://doi.org/10.1002/jame.20016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. Wang, and S. Salo, 2008: The recent Arctic warm period. Tellus, 60A, 589597, https://doi.org/10.1111/j.1600-0870.2008.00327.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, A. A., D. Schröder, J. C. Stroeve, T. Markus, J. Miller, N. T. Kurtz, D. L. Feltham, and D. Flocco, 2017: Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations. Earth’s Future, 5, 254263, https://doi.org/10.1002/2016EF000495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posey, P. G., and Coauthors, 2015: Improving Arctic sea ice edge forecasts by assimilating high horizontal resolution sea ice concentration data into the US Navy’s ice forecast systems. Cryosphere, 9, 17351745, https://doi.org/10.5194/tc-9-1735-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variation in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, https://doi.org/10.1029/2004GL019492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., and J. Zhang, 2015: Accuracy of short-term sea ice drift forecasts using a coupled ice-ocean model. J. Geophys. Res. Oceans, 120, 78277841, https://doi.org/10.1002/2015JC011273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Reduced risk of North American cold extremes due to continued Arctic sea ice loss. Bull. Amer. Meteor. Soc., 96, 14891503, https://doi.org/10.1175/BAMS-D-14-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30, 1110, https://doi.org/10.1029/2002GL016406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604610, https://dx.doi.org/10.1038/nclimate3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, https://doi.org/10.1002/grl.50129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy, 2016: Skillful seasonal forecasts of Arctic sea ice retreat and advance dates in a dynamical forecast system. Geophys. Res. Lett., 43, 12 45712 465, https://doi.org/10.1002/2016GL071396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. C., and Coauthors, 2016: Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Quart. J. Roy. Meteor. Soc., 142, 659671, https://doi.org/10.1002/qj.2555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Maslanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., L. C. Hamilton, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, https://doi.org/10.1002/2014GL059388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietsche, S., and Coauthors, 2014: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys. Res. Lett., 41, 10351043, https://doi.org/10.1002/2013GL058755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., 2006: Empirical Methods in Short-Term Climate Prediction. Oxford University Press, 240 pp.

    • Crossref
    • Export Citation
  • Van den Dool, H. M., and Z. Toth, 1991: Why do forecasts for “near normal” often fail? Wea. Forecasting, 6, 7685, https://doi.org/10.1175/1520-0434(1991)006<0076:WDFFNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., X. Yuan, M. Ting, and C. Li, 2016: Predicting summer Arctic sea ice concentration intraseasonal variability using a vector autoregressive model. J. Climate, 29, 15291543, https://doi.org/10.1175/JCLI-D-15-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, M., and J. E. Overland, 2009: A sea ice free summer Arctic within 30 years? Geophys. Res. Lett., 36, L07502, https://doi.org/10.1029/2009GL037820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., M. Chen, and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, https://doi.org/10.1175/MWR-D-12-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, https://doi.org/10.1175/JCLI3619.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., M. Wang, J. E. Overland, W. Wang, and T. W. Collow, 2017: Impact of model physics on seasonal forecasts of surface air temperature in the Arctic. Mon. Wea. Rev., 145, 773782, https://doi.org/10.1175/MWR-D-16-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., D. Chen, C. Li, L. Wang, and W. Wang, 2016: Arctic sea ice seasonal prediction by a linear Markov model. J. Climate, 29, 81518173, https://doi.org/10.1175/JCLI-D-15-0858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1528 1029 92
PDF Downloads 416 57 3