• Bell, M. M., M. T. Montgomery, and K. E. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, R., 2016: Hurricane Joaquin (AL112015) 28 September–7 October 2015. National Hurricane Center Tropical Cyclone Rep., 36 pp., www.nhc.noaa.gov/data/tcr/AL112015_Joaquin.pdf.

  • Cecil, D. J., and S. K. Biswas, 2017: Hurricane Imaging Radiometer (HIRAD) wind speed retrieval assessment with dropsondes. Tropical Cyclone Operations and Research Forum/71st Interdepartmental Hurricane Conf., Miami, FL, Office of the Federal Coordinator for Meteorology, http://www.ofcm.gov/meetings/TCORF/ihc17/Session_04/4-2-HIRAD_Cecil_TCORF2017web.pdf.

  • Creasey, R. L., and R. L. Elsberry, 2017: Tropical cyclone center positions from sequences of HDSS sondes deployed along high-altitude overpasses. Wea. Forecasting, 32, 317325, https://doi.org/10.1175/WAF-D-16-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., and M. M. Bell, 2017: Thermodynamic retrieval in rapidly rotating vortices from multiple-Doppler radar data. J. Atmos. Oceanic Technol., 34, 23532374, https://doi.org/10.1175/JTECH-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, X. Ge, and T. Li, 2011: Performance of dynamic initialization scheme in the Coupled Ocean–Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC). Wea. Forecasting, 26, 650663, https://doi.org/10.1175/WAF-D-10-05051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, and T. Li, 2013: Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction. Mon. Wea. Rev., 141, 40284048, https://doi.org/10.1175/MWR-D-12-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., R. L. Elsberry, C. S. Velden, A. C. Jorgensen, M. S. Jordan, and R. L. Creasey, 2018: Environmental factors and internal processes contributing to interrupted rapid decay of Hurricane Joaquin (2015). Wea. Forecasting, 33, 12511262, https://doi.org/10.1175/WAF-D-17-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herrera, M. A., and Coauthors, 2018: Regionally enhanced global (REG) 4D-VAR: Methodology and global model performance. Mon. Wea. Rev., 146, 40154038, https://doi.org/10.1175/MWR-D-17-0228.1.

    • Crossref
    • Export Citation
  • Hogan, T. F., and Coauthors, 2014: Navy global environmental model. Oceanography, 27, 116125, https://doi.org/10.5670/oceanog.2014.73.

  • Kim, M., H. M. Kim, J. W. Kim, S.-M. Kim, C. Velden, and B. Hoover, 2017: Effect of enhanced satellite-derived atmospheric motion vectors on numerical weather prediction in East Asia using an adjoint-based observation impact method. Wea. Forecasting, 32, 579594, https://doi.org/10.1175/WAF-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2002: The cubic-spline transform method: Basic definitions and tests in a 1D single domain. Mon. Wea. Rev., 130, 23922415, https://doi.org/10.1175/1520-0493(2002)130<2392:TCSTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyama, R., 2017: Relationship between tropical cyclone intensification and cloud-top outflow revealed by upper-tropospheric atmospheric motion vectors. J. Appl. Meteor. Climatol., 56, 28012819, https://doi.org/10.1175/JAMC-D-17-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyama, R., M. Sawada, and K. Shimoji, 2018: Diagnosis of tropical cyclone intensity and structure using upper tropospheric atmosphere motion vectors. J. Meteor. Soc. Japan, 96B, 316, https://doi.org/10.2151/jmsj.2017-024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535, https://doi.org/10.1175//1520-0493(2003)131<1524:NAOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., W. E. Lewis, W. Bresky, D. Stettner, J. Daniels, and S. Wanzong, 2017: Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 145, 11071125, https://doi.org/10.1175/MWR-D-16-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., T. Rosmond, and R. Daley, 2005: Development of NAVDAS-AR: Formulation and initial tests of the linear problem. Tellus, 57A, 546559, https://doi.org/10.3402/tellusa.v57i4.14710.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 164 6
PDF Downloads 125 90 8

Demonstration with Special TCI-15 Datasets of Potential Impacts of New-Generation Satellite Atmospheric Motion Vectors on Navy Regional and Global Models

View More View Less
  • 1 University of Colorado Colorado Springs, Colorado Springs, Colorado
  • | 2 Naval Postgraduate School, Monterey, California
  • | 3 Cooperative Institute Meteorological Satellite Studies, Madison, Wisconsin
  • | 4 Colorado State University, Fort Collins, Colorado
  • | 5 CSRA, and Naval Research Laboratory, Monterey, California
  • | 6 Naval Research Laboratory, Monterey, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A dynamic initialization assimilation scheme is demonstrated utilizing rapid-scan atmospheric motion vectors (AMVs) at 15-min intervals to simulate the real-time capability that now exists from the new generation of geostationary meteorological satellites. The impacts of these AMVs are validated with special Tropical Cyclone Intensity Experiment (TCI-15) datasets during 1200–1800 UTC 4 October leading up to a NASA WB-57 eyewall crossing of Hurricane Joaquin. Incorporating the AMV fields in the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) COAMPS Dynamic Initialization (SCDI) means there are 30 and 90 time steps on the 15- and 5-km grids, respectively, during which the mass fields are adjusted to these AMV-based wind increments during each 15-min assimilation period. The SCDI analysis of the three-dimensional vortex structure of Joaquin at 1800 UTC 4 October closely replicates the vortex tilt analyzed from the High-Definition Sounding System (HDSS) dropwindsondes. Vertical wind shears based on the AMVs at 15-min intervals are well correlated with the extreme rapid decay, an interruption of that rapid decay, and the subsequent period of constant intensity of Joaquin. Utilizing the SCDI analysis as the initial conditions for two versions of the COAMPS-TC model results in an accurate 72-h prediction of the interruption of the rapid decay and the period of constant intensity. Upscaling a similar SCDI analysis based on the 15-min interval AMVs provides a more realistic intensity and structure of Tropical Storm Joaquin for the initial conditions of the Navy Global Environmental Model (NAVGEM) than the synthetic TC vortex used operationally. This demonstration for a single 6-h period of AMVs indicates the potential for substantial impacts when an end-to-end cycling version is developed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Russell L. Elsberry, relsberr@uccs.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Abstract

A dynamic initialization assimilation scheme is demonstrated utilizing rapid-scan atmospheric motion vectors (AMVs) at 15-min intervals to simulate the real-time capability that now exists from the new generation of geostationary meteorological satellites. The impacts of these AMVs are validated with special Tropical Cyclone Intensity Experiment (TCI-15) datasets during 1200–1800 UTC 4 October leading up to a NASA WB-57 eyewall crossing of Hurricane Joaquin. Incorporating the AMV fields in the Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation (SAMURAI) COAMPS Dynamic Initialization (SCDI) means there are 30 and 90 time steps on the 15- and 5-km grids, respectively, during which the mass fields are adjusted to these AMV-based wind increments during each 15-min assimilation period. The SCDI analysis of the three-dimensional vortex structure of Joaquin at 1800 UTC 4 October closely replicates the vortex tilt analyzed from the High-Definition Sounding System (HDSS) dropwindsondes. Vertical wind shears based on the AMVs at 15-min intervals are well correlated with the extreme rapid decay, an interruption of that rapid decay, and the subsequent period of constant intensity of Joaquin. Utilizing the SCDI analysis as the initial conditions for two versions of the COAMPS-TC model results in an accurate 72-h prediction of the interruption of the rapid decay and the period of constant intensity. Upscaling a similar SCDI analysis based on the 15-min interval AMVs provides a more realistic intensity and structure of Tropical Storm Joaquin for the initial conditions of the Navy Global Environmental Model (NAVGEM) than the synthetic TC vortex used operationally. This demonstration for a single 6-h period of AMVs indicates the potential for substantial impacts when an end-to-end cycling version is developed.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Russell L. Elsberry, relsberr@uccs.edu

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Save