• Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, https://doi.org/10.1256/qj.04.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, https://doi.org/10.1175/2009MWR3157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, https://doi.org/10.1175/2009MWR3158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cossu, F., and K. Hocke, 2014: Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting Model. Geosci. Model Dev., 7, 147160, https://doi.org/10.5194/gmd-7-147-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, https://doi.org/10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, https://doi.org/10.1256/qj.05.135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jankov, I., W. A. Gallus Jr., M. Segal, B. Shaw, and S. E. Koch, 2005: The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060, https://doi.org/10.1175/WAF888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, W., J. Zhu, M. Xue, T. Lei, and J. Gao, 2010: Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part II: Imperfect model tests (in Chinese). J. Atmos. Sci., 34, 737753.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 33633373, https://doi.org/10.1175/2008MWR2312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., X. Lu, Y. Yu, J. Zhu, and J. Chen, 2014: Progress on hybrid ensemble-variational data assimilation in numerical weather prediction (in Chinese). J. Trop. Meteor., 30, 11881195.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, https://doi.org/10.1175/MWR3352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated k-correlated model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peffers, L., 2011: Hybrid variational ensemble data assimilation with initial condition and model physics uncertainty. M.S. thesis, Dept. of Earth, Ocean and Atmospheric Sciences, Florida State University, 111 pp., http://diginole.lib.fsu.edu/islandora/object/fsu%3A180297.

  • Qiu, C., and J. Chou, 2006: Four-dimensional data assimilation method based on SVD: Theoretical aspect. Theor. Appl. Climatol., 83, 5157, https://doi.org/10.1007/s00704-005-0162-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Feng, 2015: A non-linear least squares enhanced POD-4DVar algorithm for data assimilation. Tellus, 67A, 25340, https://doi.org/10.3402/tellusa.v67.25340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, and A. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113, D21124, https://doi.org/10.1029/2008JD010358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, A. Dai, C. Shi, B. Jia, F. Chen, and K. Yang, 2009: A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature. J. Geophys. Res., 114, D16102, https://doi.org/10.1029/2008JD011600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, A. Dai, B. Jia, and C. Shi, 2010: A microwave land data assimilation system: Scheme and preliminary evaluation over China. J. Geophys. Res., 115, D21113, https://doi.org/10.1029/2010JD014370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, and Q. Sun, 2011: A POD-based ensemble four-dimensional variational assimilation. Tellus, 63A, 805816, https://doi.org/10.1111/j.1600-0870.2011.00529.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., Z. Xie, Y. Liu, Z. Cai, Y. Fu, H. Zhang, and L. Feng, 2014: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric concentrations from observations. Atmos. Chem. Phys., 14, 13 28113 293, https://doi.org/10.5194/acp-14-13281-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, S. Wang, W. Cheng, L. Juan, C. Liu, Q. Xiao, and Y.-H. Kuo, 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715727, https://doi.org/10.1007/s00376-009-9122-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., T. Auligné, and H. Morrison, 2012: Impact of microphysics scheme complexity on the propagation of initial perturbations. Mon. Wea. Rev., 140, 22872296, https://doi.org/10.1175/MWR-D-12-00005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation. Mon. Wea. Rev., 136, 44704487, https://doi.org/10.1175/2008MWR2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. Kuo, J. Sun, W. Lee, D. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422, https://doi.org/10.1175/JAM2439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., L. Zhang, and S. Xie, 2016: Casual analysis of an unusual torrential rain in Guangdong in December 2015 (in Chinese). Torrential Rain Disaster, 35, 326333.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., X. Tian, J. Sun, C. Feng, Y. Zhang, L. Zhang, and S. Fu, 2015: PODEn4DVar-based radar data assimilation scheme: Formulation and preliminary results from real-data experiments with Advanced Research WRF (ARW). Tellus, 67A, 26045, https://doi.org/10.3402/tellusa.v67.26045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, https://doi.org/10.1175/2009MWR2645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 45 6
PDF Downloads 57 43 13

Application of a Physical Ensemble Method in the POD-4DEnVar

View More View Less
  • 1 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, and Unit 66199, People’s Liberation Army, Beijing, China
  • | 2 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
  • | 3 Unit 61741, People’s Liberation Army, Beijing, China
  • | 4 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, China
  • | 5 College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, and Unit 94783, People’s Liberation Army, Huzhou, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The sensitivity of the proper orthogonal decomposition (POD)-based ensemble four-dimensional variational assimilation (4DVar) method (referred to as POD-4DEnVar) to cumulus and microphysics schemes was investigated using the Weather Research and Forecasting (WRF) Model for heavy rainfall in South China. Results show that the choice of the cumulus and microphysics schemes for ensemble samples significantly impacts precipitation prediction and that Doppler radar data assimilation using POD-4DEnVar is sensitive to the parameterization schemes used for the ensemble samples. The cumulus and microphysics schemes primarily affect the vertical velocity and rainwater mixing ratio of the ensemble forecasts. Variations in the ensemble samples caused by different parameterization schemes are introduced into the four-dimensional ensemble variational assimilation by the radar data observation operator. These variations affect the analysis fields and result in variations in precipitation prediction. To obtain the optimal result (smallest forecast error), three methods are designed based on the physical ensemble technique, which can filter out the effects of different parameterization schemes for the ensemble samples through averaging. The results show that the precipitation forecasts from the three assimilation experiments are improved compared with a control experiment, but each physical ensemble method leads to a unique precipitation forecast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn

Abstract

The sensitivity of the proper orthogonal decomposition (POD)-based ensemble four-dimensional variational assimilation (4DVar) method (referred to as POD-4DEnVar) to cumulus and microphysics schemes was investigated using the Weather Research and Forecasting (WRF) Model for heavy rainfall in South China. Results show that the choice of the cumulus and microphysics schemes for ensemble samples significantly impacts precipitation prediction and that Doppler radar data assimilation using POD-4DEnVar is sensitive to the parameterization schemes used for the ensemble samples. The cumulus and microphysics schemes primarily affect the vertical velocity and rainwater mixing ratio of the ensemble forecasts. Variations in the ensemble samples caused by different parameterization schemes are introduced into the four-dimensional ensemble variational assimilation by the radar data observation operator. These variations affect the analysis fields and result in variations in precipitation prediction. To obtain the optimal result (smallest forecast error), three methods are designed based on the physical ensemble technique, which can filter out the effects of different parameterization schemes for the ensemble samples through averaging. The results show that the precipitation forecasts from the three assimilation experiments are improved compared with a control experiment, but each physical ensemble method leads to a unique precipitation forecast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lifeng Zhang, zhanglif_qxxy@sina.cn
Save