• Abdullah, M., and M. Al-Mazroui, 1998: Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis. Climate Res., 9, 213223, https://doi.org/10.3354/cr009213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and T. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., M. Wheeler, B. Lyon, and H. Cullen, 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594, https://doi.org/10.1175/MWR3026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A., and M. Tippett, 2014: Climate information, outlooks, and understanding – Where does the IRI stand? Earth Perspect., 1 (20), https://doi.org/10.1186/2194-6434-1-20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A., M. Chelliah, and S. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, https://doi.org/10.1080/07055900.1997.9649597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S., J. Luo, S. Mason, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beltrando, G., 1990: Space–time variability of rainfall in April and October–November over East Africa during the period 1932–1983. Int. J. Climatol., 10, 691702, https://doi.org/10.1002/joc.3370100704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beltrando, G., and P. Camberlin, 1993: Interannual variability of rainfall in the eastern Horn of Africa and indicators of atmospheric circulation. Int. J. Climatol., 13, 533546, https://doi.org/10.1002/joc.3370130505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berhane, F., B. Zaitchik, and H. Badr, 2015: The Madden–Julian oscillation influence on spring rainy season precipitation over equatorial West Africa. J. Climate, 28, 86538672, https://doi.org/10.1175/JCLI-D-14-00510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charabi, Y., and S. A. Abdul-Wahab, 2009: Synoptic aspects of the summer monsoon of southern Oman and its global teleconnections. J. Geophys. Res., 114, D07107, https://doi.org/10.1029/2008JD010234.

    • Search Google Scholar
    • Export Citation
  • Daan, H., 1985: Sensitivity of verification scores to the classification of the predictand. Mon. Wea. Rev., 113, 13841392, https://doi.org/10.1175/1520-0493(1985)113<1384:SOVSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., L. Trenary, M. Tippett, and K. Pegion, 2017: Predictability of week-3–4 average temperature and precipitation over the contiguous United States. J. Climate, 30, 34993512, https://doi.org/10.1175/JCLI-D-16-0567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., E. Tyrlis, D. Edry, S. Krichak, B. Steil, and J. Lelieveld, 2013: Extreme precipitation events in the Middle East: Dynamics of the active Red Sea trough. J. Geophys. Res. Atmos., 118, 70877108, https://doi.org/10.1002/jgrd.50569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., H. G. Ouwersloot, S. Feldstein, M. Riemer, A. E. Kenawy, M. McCabe, and J. Lelieveld, 2018: Identification of tropical-extratropical interactions and extreme precipitation events in the Middle East based on potential vorticity and moisture transport. J. Geophys. Res. Atmos., 123, 861881, https://doi.org/10.1002/2017JD027587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985987, https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feudale, L., and F. Kucharski, 2013: A common mode of variability of African and Indian monsoon rainfall. Climate Dyn., 41, 243254, https://doi.org/10.1007/s00382-013-1827-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. Graham, 1999: The importance of the Indian Ocean for simulating precipitation anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19 09919 116, https://doi.org/10.1029/1999JD900326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., S. Mason, S. Zebiak, C. Ropelewski, R. Basher, and M. Cane, 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152, https://doi.org/10.1002/joc.636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., 1997: Reliability diagrams for multicategory probabilistic forecasts. Wea. Forecasting, 12, 736741, https://doi.org/10.1175/1520-0434(1997)012<0736:RDFMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., and J. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., J. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, https://doi.org/10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., A. Niklis, and L. Greischar, 1993: Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res., 98, 20 21920 235, https://doi.org/10.1029/93JC02330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, and R. Sani, 2013: Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Climate, 26, 88508867, https://doi.org/10.1175/JCLI-D-12-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014: La Niña diversity and northwest Indian Ocean rim teleconnections. Climate Dyn., 43, 27072714, https://doi.org/10.1007/s00382-014-2083-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, and S. Vavrus, 2011: Inherent sea ice predictability in the rapidly changing Arctic environment of the Community Climate System Model version 3. Climate Dyn., 36, 12391253, https://doi.org/10.1007/s00382-010-0792-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., and D. Bolvin, 2012: Version 1.2 GPCP One-Degree Daily (1DD) precipitation dataset documentation. NCDC, 27 pp., ftp://meso.gsfc.nasa.gov/pub/1dd-v1.2/1DD_v1.2_doc.pdf.

  • Huffman, G., R. Adler, M. Morrissey, D. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indeje, M., F. Semazzi, and L. Ogallo, 2000: ENSO signals in East African rainfall seasons. Int. J. Climatol., 20, 1946, https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., D. Waliser, K. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, https://doi.org/10.1175/3238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., I. Rashid, F. Kucharski, M. Almazroui, and A. A. Khalaf, 2015: Multidecadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. J. Climate, 28, 47434752, https://doi.org/10.1175/JCLI-D-14-00388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kijazi, A., and C. Reason, 2005: Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO. Theor. Appl. Meteor., 82, 153176, https://doi.org/10.1007/s00704-005-0129-0.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, https://doi.org/10.1029/2009GL041677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., M. R. K. Rupa Kumar, and A. Sahai, 2007: On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dyn., 28, 649660, https://doi.org/10.1007/s00382-006-0210-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W., D. Waliser, and M. Barlow, 2012: Africa and West Asia. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer Praxis, 1–19, https://doi.org/10.1007/978-3-642-13914-7.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2014: Understanding the eastern Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, https://doi.org/10.1175/JCLI-D-13-00714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 28012813, https://doi.org/10.1175/2010JCLI3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, https://doi.org/10.1029/2011GL050337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mani, N. J., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S., 1995: Sea-surface temperatures—South African rainfall associations, 1910–1989. Int. J. Climatol., 15, 119135, https://doi.org/10.1002/joc.3370150202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Bombardi, H. Hendon, A. Marshall, A. Kumar, and R. Chattopadhyay, 2018: Monsoon sub-seasonal prediction. Sixth Int. Workshop on Monsoons, Singapore, WMO, 140–146, https://www.wmo.int/pages/prog/arep/wwrp/new/documents/IWM6AbstractsVolume.pdf.

  • Murphy, A., 1969: On the ranked probability skill score. J. Appl. Meteor., 8, 988989, https://doi.org/10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A., 1971: A note on the ranked probability skill score. J. Appl. Meteor., 10, 155156, https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mutai, C., and M. Ward, 2000: East African rainfall and the tropical circulation/convection on intraseasonal to interannual timescales. J. Climate, 13, 39153939, https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M., and H. Ghaedamini, 2010: On the relationships between the Madden–Julian oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis. J. Climate, 23, 887904, https://doi.org/10.1175/2009JCLI2141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2015: An analysis of recent rainfall conditions in eastern Africa. Int. J. Climatol., 36, 526532, https://doi.org/10.1002/joc.4358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogallo, L., 1988: Relationships between seasonal rainfall in East Africa and the Southern Oscillation. J. Climatol., 8, 3143, https://doi.org/10.1002/joc.3370080104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogallo, L., J. Janowiak, and M. Halpert, 1988: Teleconnections between seasonal rainfall over East Africa and global sea surface temperature anomalies. J. Meteor. Soc. Japan, 66, 807822, https://doi.org/10.2151/jmsj1965.66.6_807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogutu, G. E., W. Franssen, I. Supit, P. Omondi, and R. Hutjes, 2017: Skill of ECMWF system-4 ensemble seasonal climate forecasts for East Africa. Int. J. Climatol., 37, 27342756, https://doi.org/10.1002/joc.4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, A., and B. McIntyre, 2000: ENSO and interannual variability in Uganda: Implications for agricultural management. Int. J. Climatol., 20, 171182, https://doi.org/10.1002/(SICI)1097-0088(200002)20:2<171::AID-JOC471>3.0.CO;2-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and P. Camberlin, 2006a: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 24212539, https://doi.org/10.1256/qj.05.104.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., and P. Camberlin, 2006b: Influence of the Madden–Julian oscillation on East African rainfall. II: March–May season extremes and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 25412558, https://doi.org/10.1256/qj.05.223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132, 27322744, https://doi.org/10.1175/MWR2818.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin, S., B. Ziv, and N. Paldor, 2007: Tropical plumes over eastern North Africa as a source of rain in the Middle East. Mon. Wea. Rev., 135, 41354148, https://doi.org/10.1175/2007MWR1919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A., and J. Knight, 2008: Ensemble simulations of the cold European winter of 2005/6. Quart. J. Roy. Meteor. Soc., 134, 16471659, https://doi.org/10.1002/qj.312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the south Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M., A. Barnston, and A. Robertson, 2007: Estimation of seasonal precipitation tercile-based categorical probabilities from ensembles. J. Climate, 20, 22102228, https://doi.org/10.1175/JCLI4108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M., A. Barnston, and T. DelSole, 2010: Comments on “Finite samples and uncertainty estimates for skill measures for seasonal prediction.” Mon. Wea. Rev., 138, 14871493, https://doi.org/10.1175/2009MWR3214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M., M. Almazroui, and I.-S. Kang, 2015: Extended-range forecasts of areal-averaged rainfall over Saudi Arabia. Wea. Forecasting, 30, 10901105, https://doi.org/10.1175/WAF-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., G. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., B. Lyon, and A. Giannini, 2016: Sub-seasonal teleconnections between convection over the Indian Ocean, the East African long rains and tropical Pacific surface temperatures. Int. J. Climatol., 3, 11671180, https://doi.org/10.1002/joc.4765.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., A. Robertson, and M. Tippett, 2017a: Multimodel ensembling of subseasonal precipitation forecasts over North America. Mon. Wea. Rev., 145, 39133928, https://doi.org/10.1175/MWR-D-17-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigaud, N., A. Robertson, M. Tippett, and N. Acharya, 2017b: Subseasonal predictability of boreal summer monsoon rainfall from ensemble forecasts. Front. Environ. Sci., 5, 67, https://doi.org/10.3389/fenvs.2017.00067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 18891899, https://doi.org/10.1002/qj.2256.

  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., 2011: Predictability and forecasting. Intraseasonal Variability of the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer Praxis, 389–423, https://doi.org/10.1007/3-540-27250-X_12.

    • Crossref
    • Export Citation
  • Waliser, D., K. M. Laun, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, https://doi.org/10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N., 1990: Links between South African summer rainfall and temperature variability of the Agulhas and Benguela current systems. J. Geophys. Res., 95, 32973319, https://doi.org/10.1029/JC095iC03p03297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Murtugudde, and A. Kumar, 2016: Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Climate Dyn., 47, 24812500, https://doi.org/10.1007/s00382-016-2977-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A., M. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, https://doi.org/10.1175/MWR3280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wilks, D., 2002: Smoothing forecast ensembles with fitted probability distributions. Quart. J. Roy. Meteor. Soc., 128, 28212836, https://doi.org/10.1256/qj.01.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., 2009: Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteor. Appl., 16, 361368, https://doi.org/10.1002/met.134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D., and T. Hamill, 2007: Comparison of ensemble MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2013: Subseasonal to Seasonal Prediction: Research Implementation Plan. WMO Rep., 71 pp., https://library.wmo.int/pmb_ged/subseasonal_to_seasonal_prediction-research_implementation_plan_2012.pdf.

  • Yadav, R., J. Yoo, F. Kucharski, and M. Abid, 2010: Why is ENSO influencing northwest India winter precipitation in recent decades? J. Climate, 23, 19791993, https://doi.org/10.1175/2009JCLI3202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and K. Lau, 2005: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere–ocean GCM study. Meteor. Atmos. Phys., 90, 179191, https://doi.org/10.1007/s00703-004-0094-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, H., M. Wheeler, A. Sobel, and D. Hudson, 2014: Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Wea. Rev., 142, 15561569, https://doi.org/10.1175/MWR-D-13-00222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 137 13
PDF Downloads 236 134 24

Probabilistic Skill of Subseasonal Precipitation Forecasts for the East Africa–West Asia Sector during September–May

View More View Less
  • 1 International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, New York
  • | 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 3 International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The skill of submonthly forecasts of rainfall over the East Africa–West Asia sector is examined for starts during the extended boreal winter season (September–April) using three ensemble prediction systems (EPSs) from the Subseasonal-to-Seasonal (S2S) project. Forecasts of tercile category probabilities over the common period 1999–2010 are constructed using extended logistic regression (ELR), and a multimodel forecast is formed by averaging individual model probabilities. The calibration of each model separately produces reliable probabilistic weekly forecasts, but these lack sharpness beyond a week lead time. Multimodel ensembling generally improves skill by removing negative skill scores present in individual models. In addition, the multimodel ensemble week-3–4 forecasts have a higher ranked probability skill score and reliability compared to week-3 or week-4 forecasts for starts in February–April, while skill gain is less pronounced for other seasons. During the 1999–2010 period, skill over continental subregions is the highest for starts in February–April and for starts during El Niño conditions and MJO phase 7, which coincides with enhanced forecast probabilities of above-normal rainfall. Overall, these results indicate notable opportunities for the application of skillful subseasonal predictions over the East Africa–West Asia sector during the extended boreal winter season.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Vigaud, nicolas.vigaud@gmail.com

Abstract

The skill of submonthly forecasts of rainfall over the East Africa–West Asia sector is examined for starts during the extended boreal winter season (September–April) using three ensemble prediction systems (EPSs) from the Subseasonal-to-Seasonal (S2S) project. Forecasts of tercile category probabilities over the common period 1999–2010 are constructed using extended logistic regression (ELR), and a multimodel forecast is formed by averaging individual model probabilities. The calibration of each model separately produces reliable probabilistic weekly forecasts, but these lack sharpness beyond a week lead time. Multimodel ensembling generally improves skill by removing negative skill scores present in individual models. In addition, the multimodel ensemble week-3–4 forecasts have a higher ranked probability skill score and reliability compared to week-3 or week-4 forecasts for starts in February–April, while skill gain is less pronounced for other seasons. During the 1999–2010 period, skill over continental subregions is the highest for starts in February–April and for starts during El Niño conditions and MJO phase 7, which coincides with enhanced forecast probabilities of above-normal rainfall. Overall, these results indicate notable opportunities for the application of skillful subseasonal predictions over the East Africa–West Asia sector during the extended boreal winter season.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: N. Vigaud, nicolas.vigaud@gmail.com
Save