The Influence of Vertical Advection Discretization in the WRF-ARW Model on Capping Inversion Representation in Warm-Season, Thunderstorm-Supporting Environments

David S. Nevius Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by David S. Nevius in
Current site
Google Scholar
PubMed
Close
and
Clark Evans Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Clark Evans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have suggested that the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model is unable, in its default configuration, to adequately resolve the capping inversions that are commonly found in the warm-season, thunderstorm-supporting environments of the central United States. Since capping inversions typically form in environments of synoptic-scale subsidence, this study tests the hypothesis that this degradation results, in part, from implicit numerical damping of shorter-wavelength features associated with the model-default third-order-accurate vertical advection finite-differencing scheme. To aid in testing this hypothesis, two short-range, deterministic, convection-allowing model forecasts, one using the default third-order-accurate vertical advection finite-differencing scheme and another using a fourth-order-accurate differencing scheme (which lacks implicit damping but is numerically dispersive), are conducted for 25 days during the 2017 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Model-derived vertical profiles at lead times of 11 and 23 h are validated against available rawinsonde observations released in regions located in the Storm Prediction Center’s 0600 UTC day 1 convection outlook’s “general thunderstorm” forecast area. The fourth-order-accurate vertical advection finite-differencing scheme is shown to not result in statistically significant improvements to model-forecast capping inversions or, more generally, the vertical thermodynamic profile in the lower troposphere. Instead, the fourth-order-accurate differencing scheme primarily impacts the representation of longer-wavelength features already reasonably well resolved by the model. The analysis does, however, provide quantitative evidence over a large sample that, on average, the WRF-ARW model forecasts capping inversions that are too weak, with negative buoyancy spread out over too deep of a vertical layer, compared to observations.

Current affiliation: Delta Airlines, Savannah, Georgia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu

Abstract

Previous studies have suggested that the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model is unable, in its default configuration, to adequately resolve the capping inversions that are commonly found in the warm-season, thunderstorm-supporting environments of the central United States. Since capping inversions typically form in environments of synoptic-scale subsidence, this study tests the hypothesis that this degradation results, in part, from implicit numerical damping of shorter-wavelength features associated with the model-default third-order-accurate vertical advection finite-differencing scheme. To aid in testing this hypothesis, two short-range, deterministic, convection-allowing model forecasts, one using the default third-order-accurate vertical advection finite-differencing scheme and another using a fourth-order-accurate differencing scheme (which lacks implicit damping but is numerically dispersive), are conducted for 25 days during the 2017 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Model-derived vertical profiles at lead times of 11 and 23 h are validated against available rawinsonde observations released in regions located in the Storm Prediction Center’s 0600 UTC day 1 convection outlook’s “general thunderstorm” forecast area. The fourth-order-accurate vertical advection finite-differencing scheme is shown to not result in statistically significant improvements to model-forecast capping inversions or, more generally, the vertical thermodynamic profile in the lower troposphere. Instead, the fourth-order-accurate differencing scheme primarily impacts the representation of longer-wavelength features already reasonably well resolved by the model. The analysis does, however, provide quantitative evidence over a large sample that, on average, the WRF-ARW model forecasts capping inversions that are too weak, with negative buoyancy spread out over too deep of a vertical layer, compared to observations.

Current affiliation: Delta Airlines, Savannah, Georgia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Clark Evans, evans36@uwm.edu
Save
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burlingame, B. M., C. Evans, and P. J. Roebber, 2017: The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX). Wea. Forecasting, 32, 11611183, https://doi.org/10.1175/WAF-D-16-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the formation of severe local storms. Tellus, 20, 203226, https://doi.org/10.3402/tellusa.v20i2.10002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., M. C. Coniglio, B. E. Coffer, G. Thompson, M. Xue, and F. Kong, 2015: Sensitivity of 24-h forecast dryline position and structure to boundary layer parameterizations in convection-allowing WRF Model simulations. Wea. Forecasting, 30, 613638, https://doi.org/10.1175/WAF-D-14-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., L. C. Maudlin, P. G. Veals, and A. J. Clark, 2013: Dryline position errors in experimental convection-allowing NSSL-WRF forecasts and the operational NAM. Wea. Forecasting, 28, 746761, https://doi.org/10.1175/WAF-D-12-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, H. E. Brooks, and I. L. Jirak, 2017: Evaluation of multiple planetary boundary layer parameterization schemes in southeast U.S. cold season severe thunderstorm environments. Wea. Forecasting, 32, 18571884, https://doi.org/10.1175/WAF-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF Model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, https://doi.org/10.1175/WAF-D-12-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R. B., 1971: An omnibus test of normality for moderate and large sample size. Biometrika, 58, 341348, https://doi.org/10.1093/biomet/58.2.341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R. B., and E. S. Pearson, 1973: Tests for departure from normality. Empirical results for the distributions of b2 and √b. Biometrika, 60, 613622, https://doi.org/10.1093/biomet/60.3.613.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., S. J. Weiss, I. L. Jirak, A. R. Dean, and D. S. Nevius, 2018: An evaluation of paired regional/convection-allowing forecast vertical thermodynamic profiles in warm-season, thunderstorm-supporting environments. Wea. Forecasting, 33, 15471566, https://doi.org/10.1175/WAF-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, R. J., and T. N. Carlson, 1989: Evidence for the role of the lid and underrunning in an outbreak of tornadic thunderstorms. Mon. Wea. Rev., 117, 857871, https://doi.org/10.1175/1520-0493(1989)117<0857:EFTROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and D. Rostkier-Edelstein, 2007: PBL state estimation with surface observations, a column model, and an ensemble filter. Mon. Wea. Rev., 135, 29582972, https://doi.org/10.1175/MWR3443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., J. L. Anderson, and M. Pagowski, 2007: Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations. Mon. Wea. Rev., 135, 10211036, https://doi.org/10.1175/MWR3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeda, K., M. Steiner, and G. Thompson, 2017: Examination of mixed-phase precipitation forecasts from the High-Resolution Rapid Refresh model using surface observations and sounding data. Wea. Forecasting, 32, 949967, https://doi.org/10.1175/WAF-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., C. R. Alexander, and J. M. Brown, 2018: Testing the impact of additional vertical levels for the 3km High-Resolution Rapid Refresh. 25th Conf. on Numerical Weather Prediction, Amer. Meteor. Soc., Denver, CO, 12B.3, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper344731.html.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., and R. L. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 Dynamics. NCAR Tech. Note NCAR/TN-489+STR, 75 pp., https://doi.org/10.5065/D6WH2MZX.

    • Crossref
    • Export Citation
  • Jirak, I., A. Clark, J. Correia, K. Knopfmeier, C. Melick, B. Twiest, M. Coniglio, and S. Weiss, 2015: Spring Forecasting Experiment 2015: Preliminary findings and results. NOAA/NSSL/Storm Prediction Center, 32 pp., http://hwt.nssl.noaa.gov/Spring_2015/HWT_SFE_2015_Prelim_Findings_Final.pdf.

  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2017: Collaborative efforts between the United States and United Kingdom to advance prediction of high-impact weather. Bull. Amer. Meteor. Soc., 98, 937948, https://doi.org/10.1175/BAMS-D-15-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF Model. Mon. Wea. Rev., 135, 38083824, https://doi.org/10.1175/2007MWR2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladwig, W., 2017: Wrf-python (version 1.1.1). NCAR, https://doi.org/10.5065/D6W094P1.

    • Crossref
    • Export Citation
  • Lanicci, J. M., and T. T. Warner, 1991: A synoptic climatology of the elevated mixed-layer inversion over the southern Great Plains in spring. Part I: Structure, dynamics, and seasonal evolution. Wea. Forecasting, 6, 181197, https://doi.org/10.1175/1520-0434(1991)006<0181:ASCOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • May, R. M., S. C. Arms, P. Marsh, E. Bruning, and J. R. Leeman, 2017: MetPy: A Python package for meteorological data. Unidata, https://doi.org/10.5065/D6WW7G29.

    • Crossref
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2018: North American Mesoscale (NAM) analysis and forecast system characteristics. National Centers for Environmental Prediction, 9 pp., http://www.emc.ncep.noaa.gov/mmb/mmbpll/misc/NAM_2017.pdf.

  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, https://doi.org/10.1175/JAM2539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, and D. J. Gochis, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and M. L. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, https://doi.org/10.1175/2008MWR2583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperian, and V. Perov, 2005: Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, https://doi.org/10.1007/s10546-004-6848-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M. F., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Amer. Meteor. Soc., Seattle, WA, 17, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Trier, S. B., C. A. Davis, D. A. Ahijevych, and K. W. Manning, 2014: Use of the parcel buoyancy minimum (Bmin) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation environments. Mon. Wea. Rev., 142, 945966, https://doi.org/10.1175/MWR-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2014: The Met Office Unified Model global atmosphere 4.0 and JULES global land 4.0 configurations. Geosci. Model Dev., 7, 361386, https://doi.org/10.5194/gmd-7-361-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 550 pp.

  • Weiss, S., J. Kain, D. Bright, J. Levit, G. Carbin, and M. Coniglio, 2007: Experimental Forecast Program Spring Experiment 2007: Program overview and operations plan. NOAA/NSSL/Storm Prediction Center, 62 pp., https://hwt.nssl.noaa.gov/sfe/2007/opsplan/Spring_Experiment_2007_ops_plan_May13.pdf.

  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 511 124 13
PDF Downloads 389 79 2