Using Operational Radar to Identify Deep Hail Accumulations from Thunderstorms

Robinson Wallace Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Robinson Wallace in
Current site
Google Scholar
PubMed
Close
,
Katja Friedrich Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Evan A. Kalina University of Colorado Boulder, and Cooperative Institute for Research in Environmental Sciences, NOAA/Earth System Research Laboratory/Global Systems Division, Boulder, Colorado

Search for other papers by Evan A. Kalina in
Current site
Google Scholar
PubMed
Close
, and
Paul Schlatter National Oceanic and Atmospheric Administration/National Weather Service, Boulder, Colorado

Search for other papers by Paul Schlatter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thunderstorms that produce surface hail accumulations, sometimes as large as 60 cm in depth, have significantly affected the residents of the Front Range and High Plains of Colorado and Wyoming by creating hazardous road conditions and endangering lives and property. To date, surface hail accumulation is not part of a routine forecasting or monitoring system. Extensive coordinated hail accumulation reports and operational products designed to identify deep hail accumulating storms in real time are lacking. Kalina et al. used dual-polarization WSR-88D radar observations to calculate hail depth and hail accumulations but never validated the algorithm. This study shows how 20 quality-controlled hail depth reports from the hail depth database built by the Colorado Hail Accumulation from Thunderstorms (CHAT) project are being used to validate the Kalina et al. radar-based hail accumulation algorithm for operational application. The validated algorithm shows increased correlations between radar-derived and reported accumulations for hail depth reports not included in the validation. Furthermore, increases in computational efficiency have allowed the improved algorithm to be used operationally. With an improved hail accumulation algorithm, thunderstorms that produce hail accumulations are more frequently detected than previously reported.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robinson Wallace, robinson.wallace@colorado.edu

Abstract

Thunderstorms that produce surface hail accumulations, sometimes as large as 60 cm in depth, have significantly affected the residents of the Front Range and High Plains of Colorado and Wyoming by creating hazardous road conditions and endangering lives and property. To date, surface hail accumulation is not part of a routine forecasting or monitoring system. Extensive coordinated hail accumulation reports and operational products designed to identify deep hail accumulating storms in real time are lacking. Kalina et al. used dual-polarization WSR-88D radar observations to calculate hail depth and hail accumulations but never validated the algorithm. This study shows how 20 quality-controlled hail depth reports from the hail depth database built by the Colorado Hail Accumulation from Thunderstorms (CHAT) project are being used to validate the Kalina et al. radar-based hail accumulation algorithm for operational application. The validated algorithm shows increased correlations between radar-derived and reported accumulations for hail depth reports not included in the validation. Furthermore, increases in computational efficiency have allowed the improved algorithm to be used operationally. With an improved hail accumulation algorithm, thunderstorms that produce hail accumulations are more frequently detected than previously reported.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robinson Wallace, robinson.wallace@colorado.edu
Save
  • Anderson, J., P. Burns, D. Milroy, P. Ruprecht, T. Hauser, and H. J. Siegel, 2017: Deploying RMACC Summit: An HPC resource for the Rocky Mountain region. Proc. Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, New Orleans, LA, Association for Computing Machinery, https://doi.org/10.1145/3093338.3093379.

    • Crossref
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., and N. M. Taylor, 2017: Verification of the MESH product over the Canadian prairies using a high-quality surface hail report database source from social media. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 240, https://ams.confex.com/ams/38RADAR/webprogram/Paper321272.html.

  • Browning, K. A., 1964: Airflow and precipitation trajectories with severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–43.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric study. Mon. Wea. Rev., 128, 26872710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1977: The climatology of hail in North America. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 107–133.

    • Crossref
    • Export Citation
  • Cifelli, R., N. Doeksen, P. Kennedy, L. D. Carey, S. A. Rutledge, C. Gimmestad, and T. Depue, 2005: The Community Collaborative Rain, Hail, and Snow Network: Informal education for scientists and citizens. Bull. Amer. Meteor. Soc., 86, 10691077, https://doi.org/10.1175/BAMS-86-8-1069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528, https://doi.org/10.1175/1520-0493(1993)121<2511:ASOEPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denver CBS, 2015: Hail closes I-25 in Colorado Springs. Accessed 15 May 2018, https://denver.cbslocal.com/2015/05/07/hail-closes-i-25-in-colorado-springs/.

  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, https://doi.org/10.1175/JAM2529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durta, G., 2016: Heavy rain, hail hit northern Colorado; week of storms to keep metro area cool and wet. KDVR-TV, https://kdvr.com/2016/04/25/week-of-storms-to-keep-us-cloudy-windy-cool-and-wet-for-next-several-days/.

  • El-Magd, A., V. Chandrasekar, V. Bringi, and W. Strapp, 2000: Multiparameter radar and in situ aircraft observation of graupel and hail. IEEE Trans. Geosci. Remote Sens., 38, 570578, https://doi.org/10.1109/36.823951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2019: CHAT: The Colorado Hail Accumulation from Thunderstorms project. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-16-0277.1,in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthier, M. L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston. Geophys. Res. Lett., 33, L20803, https://doi.org/10.1029/2006GL027244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Softw., 4 (1), e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1983: Case study of a hailstorm in Colorado. Part IV: Graupel and hail growth mechanisms deduced through particle trajectory calculations. J. Atmos. Sci., 40, 14821509, https://doi.org/10.1175/1520-0469(1983)040<1482:CSOAHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and K. M. Miller, 1988: Water vapor and ice mass transported into the anvils of CCOPE thunderstorms: Comparison with storm influx and rainout. J. Atmos. Sci., 45, 35013514, https://doi.org/10.1175/1520-0469(1988)045<3501:WVAIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Sci., 71, 33923403, https://doi.org/10.1175/JAS-D-14-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., I. M. Giammanco, and R. Wright, 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, https://doi.org/10.1002/2014GL062324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ICF, 2014: 2013 economic impact study for Colorado airports. Tech. Rep. prepared for Division of Aeronautics, Colorado Dept. of Transportation, 117 pp., https://www.codot.gov/programs/aeronautics/PDF_Files/2013EIS_TECHRPT.

  • Kalina, E. A., K. Friedrich, B. Motta, W. Deierling, G. Stanno, and N. Rydell, 2016: Colorado plowable hailstorms: Synoptic weather, radar, and lightning characteristics. Wea. Forecasting, 31, 663693, https://doi.org/10.1175/WAF-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KKTV, 2015: All hail breaks loose in Colorado Springs. Accessed 16 June 2016, https://www.kktv.com/home/headlines/Severe-Weather-Comes-Roaring-Back-Into-Colorado-Springs--302995801.html.

  • Knight, C. A., and N. C. Knight, 2001: Hailstorms in severe convective storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–254.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., P. T. Schlatter, and T. W. Schlatter, 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Mon. Wea. Rev., 136, 28332848, https://doi.org/10.1175/2008MWR2338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozowski, E. P., and A. G. Beattie, 1979: Measurements of the kinematics of natural hailstones near the ground. Quart. J. Roy. Meteor. Soc., 105, 453459, https://doi.org/10.1002/qj.49710544409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes and kinematics of falling hailstones. J. Atmos. Sci., 37, 11071125, https://doi.org/10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. C. Fankhauser, and G. B. Foote, 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 16191646, https://doi.org/10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosier, R. M., C. Schumacher, R. E. Orville, and L. D. Carey, 2011: Radar nowcasting of cloud-to-ground lightning over Houston, Texas. Wea. Forecasting, 26, 200212, https://doi.org/10.1175/2010WAF2222431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2018: U.S. billion-dollar weather and climate disasters: Overview. NOAA/National Centers for Environmental Information, https://www.ncdc.noaa.gov/billions/.

  • Ortega, K. L., 2018: Evaluating Multi-Radar, Multi-Sensor products for surface hail-fall diagnosis. Electron. J. Severe Storm Meteor., 13 (1), http://www.ejssm.org/ojs/index.php/ejssm/article/viewFile/163/113.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, E., 2017: The Coors Field turf isn’t beautiful by accident. KUSA-TV, https://www.9news.com/article/news/local/next/the-coors-field-turf-isnt-beautiful-by-accident/454532179.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rasmussen, R., and A. Heymsfield, 1987a: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27642782, https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and A. Heymsfield, 1987b: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 27642782, https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlatter, P. T., T. W. Schlatter, and C. A. Knight, 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part I: Mesoscale setting and radar features. Mon. Wea. Rev., 136, 28132832, https://doi.org/10.1175/2008MWR2337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlatter, T. W., and N. Doesken, 2010: Deep hail: Tracking an elusive phenomenon. Weatherwise, 63 (5), 3541, https://doi.org/10.1080/00431672.2010.503841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, G. D., and D. M. Kilgour, 1969: The density of random close packing of spheres. J. Phys. D, 2, 863866, https://doi.org/10.1088/0022-3727/2/6/311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylte, A., 2016: Traffic resumes at DIA after hail storm. KUSA-TV, www.9news.com/news/faa-holding-traffic-at-dia-due-to-storm/216261034.

  • U.S. Census Bureau, 2016: Estimates of the components of resident population change: April 1, 2010 to July 1, 2016. U.S.Census Bureau, https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2016_PEPTCOMP&prodType=table.

  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, A., M. Kumjian, M. J. Bunkers, S. W. Bieda III, and R. J. Simpson, 2018: Using polarimetric radar data to identify potentially hazardous hail accumulations. 34th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 11B.1, https://ams.confex.com/ams/98Annual/webprogram/Paper326596.html.

  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 185 5
PDF Downloads 858 149 3