Tropical Cyclone Forecasts Impact Assessment from the Assimilation of Hourly Visible, Shortwave, and Clear-Air Water Vapor Atmospheric Motion Vectors in HWRF

Agnes H. N. Lim Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Agnes H. N. Lim in
Current site
Google Scholar
PubMed
Close
,
James A. Jung Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by James A. Jung in
Current site
Google Scholar
PubMed
Close
,
Sharon E. Nebuda Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Sharon E. Nebuda in
Current site
Google Scholar
PubMed
Close
,
Jaime M. Daniels NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland

Search for other papers by Jaime M. Daniels in
Current site
Google Scholar
PubMed
Close
,
Wayne Bresky NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, and I.M. Systems Group, Rockville, Maryland

Search for other papers by Wayne Bresky in
Current site
Google Scholar
PubMed
Close
,
Mingjing Tong NOAA/NWS/NCEP/Environmental Modeling Center, College Park, and I.M. Systems Group, Rockville, Maryland

Search for other papers by Mingjing Tong in
Current site
Google Scholar
PubMed
Close
, and
Vijay Tallapragada NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The assimilation of atmospheric motion vectors (AMVs) provides important wind information to conventional data-lacking oceanic regions, where tropical cyclones spend most of their lifetimes. Three new AMV types, shortwave infrared (SWIR), clear-air water vapor (CAWV), and visible (VIS), are produced hourly by NOAA/NESDIS and are assimilated in operational NWP systems. The new AMV data types are added to the hourly infrared (IR) and cloud-top water vapor (CTWV) AMV data in the 2016 operational version of the HWRF Model. In this study, we update existing quality control (QC) procedures and add new procedures specific to tropical cyclone assimilation. We assess the impact of the three new AMV types on tropical cyclone forecasts by conducting assimilation experiments for 25 Atlantic tropical cyclones from the 2015 and 2016 hurricane seasons. Forecasts are analyzed by considering all tropical cyclones as a group and classifying them into strong/weak storm vortices based on their initial model intensity. Metrics such as track error, intensity error, minimum central pressure error, and storm size are used to assess the data impact from the addition of the three new AMV types. Positive impact is obtained for these metrics, indicating that assimilating SWIR-, CAWV-, and VIS-type AMVs are beneficial for tropical cyclone forecasting. Given the results presented here, the new AMV types were accepted into NOAA/NCEP’s operational HWRF for the 2017 hurricane season.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agnes H. N. Lim, alim@ssec.wisc.edu

Abstract

The assimilation of atmospheric motion vectors (AMVs) provides important wind information to conventional data-lacking oceanic regions, where tropical cyclones spend most of their lifetimes. Three new AMV types, shortwave infrared (SWIR), clear-air water vapor (CAWV), and visible (VIS), are produced hourly by NOAA/NESDIS and are assimilated in operational NWP systems. The new AMV data types are added to the hourly infrared (IR) and cloud-top water vapor (CTWV) AMV data in the 2016 operational version of the HWRF Model. In this study, we update existing quality control (QC) procedures and add new procedures specific to tropical cyclone assimilation. We assess the impact of the three new AMV types on tropical cyclone forecasts by conducting assimilation experiments for 25 Atlantic tropical cyclones from the 2015 and 2016 hurricane seasons. Forecasts are analyzed by considering all tropical cyclones as a group and classifying them into strong/weak storm vortices based on their initial model intensity. Metrics such as track error, intensity error, minimum central pressure error, and storm size are used to assess the data impact from the addition of the three new AMV types. Positive impact is obtained for these metrics, indicating that assimilating SWIR-, CAWV-, and VIS-type AMVs are beneficial for tropical cyclone forecasting. Given the results presented here, the new AMV types were accepted into NOAA/NCEP’s operational HWRF for the 2017 hurricane season.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Agnes H. N. Lim, alim@ssec.wisc.edu
Save
  • Aberson, S. D., 2011: The impact of dropwindsonde data from the THORPEX Pacific Area Regional Campaign and the NOAA hurricane field program on tropical cyclone forecasts in the Global Forecast System. Mon. Wea. Rev., 139, 26892703, https://doi.org/10.1175/2011MWR3634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Amer. Meteor. Soc., 80, 421427, https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayler, G., and H. Lewit, 1992: The Navy Operational Global and Regional Atmospheric Prediction System at the Fleet Numerical Oceanography Center. Wea. Forecasting, 7, 273279, https://doi.org/10.1175/1520-0434(1992)007<0273:TNOGAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berger, H., R. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 23092318, https://doi.org/10.1175/JAMC-D-11-019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, M. K., L. Carson, K. Newman, L. Bernardet, and C. Holt, 2016a: Community HWRF users’ guide V3.8a. NCAR Developmental Testbed Center Rep., 149 pp., http://www.dtcenter.org/HurrWRF/users/docs/users_guide/HWRF_v3.8a_UG.pdf.

  • Biswas, M. K., and Coauthors, 2016b: Hurricane Weather Research Forecasting (HWRF) Model: 2016 scientific documentation. NCAR Developmental Testbed Center Rep., 95 pp., http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.8a_ScientificDoc.pdf.

  • Bormann, N., K. Salonen, C. Peubey, T. McNally, and C. Lupu, 2012: An overview of the status of the operational assimilation of AMVs at ECMWF. Proc. 11th Int. Winds Workshop, Auckland, New Zealand, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2039311.html.

  • Bresky, W., J. Daniels, A. Bailey, and S. Wanzong, 2012: New methods towards minimizing the slow speed bias associated with atmospheric motion vectors (AMVs). J. Appl. Meteor. Climatol., 51, 21372151, https://doi.org/10.1175/JAMC-D-11-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2017: 2016 hurricane season. National Hurricane Center Forecast Verification Rep., 72 pp., https://www.nhc.noaa.gov/verification/pdfs/Verification_2016.pdf.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, K.-H., C.-C. Wu, P.-H. Lin, S. D. Aberson, M. Weissmann, F. Harnisch, and T. Nakazawa, 2011: The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743, https://doi.org/10.1175/2010MWR3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christophersen, H., A. Aksoy, J. Dunion, and S. Aberson, 2018: Composite impact of Global Hawk unmanned aircraft dropwindsondes on tropical cyclone analyses and forecasts. Mon. Wea. Rev., 146, 22972314, https://doi.org/10.1175/MWR-D-17-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, J., and M. Forsythe, 2012: AMVs at the Met Office: Activities to improve their impact in NWP. Proc. 11th Int. Winds Workshop, Auckland, New Zealand, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2039311.html.

  • Ferrier, B. S., Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm.

  • Goerss, J. S., 2009: Impact of satellite observations on the tropical cyclone track forecasts of the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 137, 4150, https://doi.org/10.1175/2008MWR2601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: Study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A., 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud height. GOES-R Program Office Rep., 77 pp., http://www.goes-r.gov/products/ATBDs/baseline/Cloud_CldHeight_v2.0_no_color.pdf.

  • Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Wea. Forecasting, 13, 10931105, https://doi.org/10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., C. S. Velden, P. M. Pauley, and H. Berger, 2009: Impact of satellite-derived rapid-scan wind observations on numerical model forecasts of Hurricane Katrina. Mon. Wea. Rev., 137, 16151622, https://doi.org/10.1175/2008MWR2627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E., Y. Kim, E. Sohn, J. Cotton, and R. Saunders, 2012: Application of hourly COMS AMVs in KMA operation. Proc. 11th Int. Winds Workshop, Auckland, New Zealand, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2039311.html.

  • Le Marshall, J., and L. M. Leslie, 1999: Modelling tropical cyclone intensity. Aust. Meteor. Mag., 48, 147152.

  • Le Marshall, J., L. M. Leslie, and A. F. Bennett, 1996a: Tropical Cyclone Beti—An example of the benefits of assimilating hourly satellite wind data. Aust. Meteor. Mag., 45, 275279.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., L. M. Leslie, and C. Spinoso, 1996b: The impact of spatial and temporal distribution of satellite observations on tropical cyclone data assimilation: Preliminary results. Meteor. Atmos. Phys., 60, 157163, https://doi.org/10.1007/BF01029792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., C. Spinoso, and N. R. Pescod, 1996c: Estimation and assimilation of hourly high spatial resolution wind vectors based on GMS-5 observation. Aust. Meteor. Mag., 45, 279284.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., A. Rea, L. Leslie, R. Seecamp, and M. Dunn, 2004: Error characterization of atmospheric motion vectors. Aust. Meteor. Mag., 53, 123131.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2013: The operational generation of continuous winds in the Australian region and their assimilation with 4DVAR. Wea. Forecasting, 28, 504514, https://doi.org/10.1175/WAF-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., J. F. Le Marshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 12481257, https://doi.org/10.1175/1520-0493(1998)126<1248:IHTFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble-variational data assimilation system for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82, 3347, https://doi.org/10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, K., 2005: The community Noah Land Surface Model (LSM). NOAA/NCEP/EMC Rep., 26 pp., https://ral.ucar.edu/sites/default/files/public/product-tool/unified-noah-lsm/Noah_LSM_USERGUIDE_2.7.1.pdf.

  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. Wanzong, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 11211133, https://doi.org/10.1175/1520-0477(1997)078<1121:FACDWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NOAA/NCEP/EMC Tech. Procedures Bull., http://www.emc.ncep.noaa.gov/mmb/mmbpll/mesoimpl/eta22tpb/.

  • Su, X., J. Daniels, J. Derber, Y. Lin, A. Bailey, W. Bresky, and H. Qi, 2014: Assimilation of GOES hourly AMVs in NCEP global data assimilation and forecast system. Proc. 12th Int. Winds Workshop, Copenhagen, Denmark, EUMETSAT, https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_2441511.html?lang=EN.

  • Tallapragada, V., C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I. Kwon, 2014: Evaluation of storm structure from the operational HWRF model during 2012 implementation. Mon. Wea. Rev., 142, 43084325, https://doi.org/10.1175/MWR-D-13-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, M., J. Sippel, V. Tallapragada, E. Liu, C. Kieu, I. Kwon, W. Wang, Q. Liu, Y. Ling, and B. Zhang, 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble–variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and S. B. Goldenberg, 1987: The inclusion of high density satellite wind information in a barotropic hurricane-track forecast model. Preprints, 17th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 90–93.

  • Velden, C. S., C. M. Hayden, M. S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., W. E. Lewis, W. Bresky, D. Stettner, J. Daniels, and S. Wanzong, 2017: Assimilation of high-resolution satellite-derived atmospheric motion vectors: Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 145, 11071125, https://doi.org/10.1175/MWR-D-16-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, https://doi.org/10.1175/MWR-D-12-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 444 115 9
PDF Downloads 437 133 28