C-band Dual-Polarization Radar Signatures of Wet Downbursts around Cape Canaveral, Florida

Corey G. Amiot Department of Atmospheric Science, The University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Corey G. Amiot in
Current site
Google Scholar
PubMed
Close
,
Lawrence D. Carey Department of Atmospheric Science, The University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Lawrence D. Carey in
Current site
Google Scholar
PubMed
Close
,
William P. Roeder 45th Weather Squadron, Patrick Air Force Base, Florida

Search for other papers by William P. Roeder in
Current site
Google Scholar
PubMed
Close
,
Todd M. McNamara 45th Weather Squadron, Patrick Air Force Base, Florida

Search for other papers by Todd M. McNamara in
Current site
Google Scholar
PubMed
Close
, and
Richard J. Blakeslee NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Richard J. Blakeslee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind warnings are the second-most-frequent advisory issued by the U.S. Air Force’s 45th Weather Squadron (45WS) at Cape Canaveral, Florida. Given the challenges associated with nowcasting convection in Florida during the warm season, improvements in 45WS warnings for convective wind events are desired. This study aims to explore the physical bases of dual-polarization radar signatures within wet downbursts around Cape Canaveral and identify signatures that may assist the 45WS during real-time convective wind nowcasting. Data from the 45WS’s C-band dual-polarization radar were subjectively analyzed within an environmental context, with quantitative wind measurements recorded by weather tower sensors for 32 threshold-level downbursts with near-surface winds ≥ 35 kt (1 kt ≈ 0.51 m s−1) and 32 null downbursts. Five radar signatures were identified in threshold-level downburst-producing storms: peak height of 1-dB differential reflectivity ZDR column, peak height of precipitation ice signature, peak reflectivity, height below 0°C level where ZDR increases to 3 dB within a descending reflectivity core (DRC), and vertical ZDR gradient within DRC. Examining these signatures directly in updraft–downdraft cycles that produced threshold-level winds yielded mean lead times of 20.0–28.2 min for cumulus and mature stage signatures and 12.8–14.9 min for dissipating stage signatures, with higher signature test values generally yielding higher skill scores. A conceptual test of utilizing signatures within earlier cells in multicell storms to indirectly predict the potential for intense downbursts in later cells was performed, which offered increased lead times and skill scores for an Eulerian forecast region downstream from the storm initiation location.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Corey G. Amiot, ca0019@uah.edu

Abstract

Wind warnings are the second-most-frequent advisory issued by the U.S. Air Force’s 45th Weather Squadron (45WS) at Cape Canaveral, Florida. Given the challenges associated with nowcasting convection in Florida during the warm season, improvements in 45WS warnings for convective wind events are desired. This study aims to explore the physical bases of dual-polarization radar signatures within wet downbursts around Cape Canaveral and identify signatures that may assist the 45WS during real-time convective wind nowcasting. Data from the 45WS’s C-band dual-polarization radar were subjectively analyzed within an environmental context, with quantitative wind measurements recorded by weather tower sensors for 32 threshold-level downbursts with near-surface winds ≥ 35 kt (1 kt ≈ 0.51 m s−1) and 32 null downbursts. Five radar signatures were identified in threshold-level downburst-producing storms: peak height of 1-dB differential reflectivity ZDR column, peak height of precipitation ice signature, peak reflectivity, height below 0°C level where ZDR increases to 3 dB within a descending reflectivity core (DRC), and vertical ZDR gradient within DRC. Examining these signatures directly in updraft–downdraft cycles that produced threshold-level winds yielded mean lead times of 20.0–28.2 min for cumulus and mature stage signatures and 12.8–14.9 min for dissipating stage signatures, with higher signature test values generally yielding higher skill scores. A conceptual test of utilizing signatures within earlier cells in multicell storms to indirectly predict the potential for intense downbursts in later cells was performed, which offered increased lead times and skill scores for an Eulerian forecast region downstream from the storm initiation location.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Corey G. Amiot, ca0019@uah.edu
Save
  • Amiot, C. G., 2017: Using C-band dual-polarization radar and environmental signatures to improve convective wind nowcasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center. M.S. thesis, Dept. of Atmospheric Science, The University of Alabama in Huntsville, 158 pp.

  • Anderson, M. E., L. D. Carey, W. A. Petersen, and K. R. Knupp, 2011: C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteor., 2011-EJ02, http://nwafiles.nwas.org/ej/pdf/2011-EJ2.pdf.

  • Atlas, D., C. W. Ulbrich, and C. R. Williams, 2004: Physical origin of a wet microburst: Observations and theory. J. Atmos. Sci., 61, 11861196, https://doi.org/10.1175/1520-0469(2004)061<1186:POOAWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, https://doi.org/10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldini, L., E. Gorgucci, V. Chandrasekar, and W. Peterson, 2005: Implementations of CSU hydrometeor classification scheme for C-band polarimetric radars. 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.4, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_95865.htm.

  • Barnes, L. R., D. M. Schultz, E. C. Gruntfest, M. H. Hayden, and C. C. Benight, 2009: CORRIGENDUM: False alarm rate or false alarm ratio? Wea. Forecasting, 24, 14521454, https://doi.org/10.1175/2009WAF2222300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borowska, L., A. Ryzhkov, D. Zrnić, C. Simmer, and R. Palmer, 2011: Attenuation and differential attenuation of 5-cm-wavelength radiation in melting hail. J. Appl. Meteor. Climatol., 50, 5976, https://doi.org/10.1175/2010JAMC2465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Crossref
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, P. Meischner, J. Hubbert, and Y. Golestani, 1991: Polarimetric radar signatures of precipitation at S- and C-bands. IEE Proc. F, 138, 109119.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160, https://doi.org/10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915, https://doi.org/10.1109/36.951081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 1976: Structure of an evolving hailstorm, Part V: Synthesis and implications for hail growth and hail suppression. Mon. Wea. Rev., 104, 603610, https://doi.org/10.1175/1520-0493(1976)104<0603:SOAEHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida Peninsula. J. Meteor., 5, 275280, https://doi.org/10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, and D. A. Ahijevych, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433, https://doi.org/10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. N. Bringi, S. A. Rutledge, E. Gorgucci, W. A. Petersen, and G. S. Jackson, 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 11271146, https://doi.org/10.1175/2008BAMS2177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computer Sciences Raytheon, 2015: 45th Space Wing Eastern Range instrumentation handbook—CAPE WINDS. Computer Sciences Raytheon, 27 pp.

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52, 21622186, https://doi.org/10.1175/JAMC-D-12-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. T. Allen, and G. W. Carbin, 2018: Reliability and climatological impacts of convective wind estimations. J. Appl. Meteor. Climatol., 57, 18251845, https://doi.org/10.1175/JAMC-D-17-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and R. M. Wakimoto, 1983: Microbursts in JAWS depicted by Doppler radars, PAM, and aerial photographs. Preprints, 21st Conf. on Radar Meteorology, Edmonton, AB, Canada, Amer. Meteor. Soc., 638–645.

  • Harris, R. A., 2011: Comparing variable updraft melting layer heights to convective wind speeds using polarimetric radar data. M.S. thesis, Dept. of Atmospheric Science and Chemistry, Plymouth State University, 63 pp.

  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471499, https://doi.org/10.1175/MWR-D-15-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed phased array radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651376, https://doi.org/10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775, https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354, https://doi.org/10.1175/1520-0450(1996)035<0343:MPROOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, J. T., P. L. MacKeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The Storm Cell Identification and Tracking Algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263276, https://doi.org/10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. M. Wakimoto, 1991: Kinematic, dynamic, and thermodynamic analysis of a weakly sheared severe thunderstorm over northern Alabama. Mon. Wea. Rev., 119, 262297, https://doi.org/10.1175/1520-0493(1991)119<0262:KDATAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1996: Structure and evolution of a long-lived, microburst-producing storm. Mon. Wea. Rev., 124, 27852806, https://doi.org/10.1175/1520-0493(1996)124<2785:SAEOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827851, https://doi.org/10.1175/WAF-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loconto, A. N., 2006: Improvements of warm-season convective wind forecasts at the Kennedy Space Center and Cape Canaveral Air Force Station. M.S. thesis, Dept. of Chemical, Earth, Atmospheric, and Physical Sciences, Plymouth State University, 79 pp.

  • López, R. E., D. O. Blanchard, D. Rosenfeld, W. L. Hiscox, and M. J. Casey, 1984: Population characteristics, development process and structure of radar echoes in south Florida. Mon. Wea. Rev., 112, 5675, https://doi.org/10.1175/1520-0493(1984)112<0056:PCDPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2016: Characterization of the 14 June 2011 Norman, Oklahoma, downburst through dual-polarization radar observations and hydrometeor classification. J. Appl. Meteor. Climatol., 55, 26352655, https://doi.org/10.1175/JAMC-D-16-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.

    • Crossref
    • Export Citation
  • McCue, M. H., J. P. Koermer, T. R. Boucher, and W. P. Roeder, 2010: Validation and development of existing and new RAOB-based warm-season convective wind forecasting tools for Cape Canaveral Air Force Station and Kennedy Space Center. 22nd Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc., 102, https://ams.confex.com/ams/90annual/techprogram/paper_160981.htm.

  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701, https://doi.org/10.1175/1520-0493(1991)119<0678:ASLISG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2016: Airport weather warnings. National Weather Service Instruction 10-801, 12 pp., http://www.nws.noaa.gov/directives/sym/pd01008001curr.pdf.

  • Picca, J. C., M. Kumjian, and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm.

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115139, https://doi.org/10.1175/1520-0493(1974)102<0115:ATDNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, J. J., 2010: Evaluating WSR-88D methods to predict warm-season convective wind events at Cape Canaveral Air Force Station and Kennedy Space Center. M.S. thesis, Dept. of Atmospheric Science and Chemistry, Plymouth State University, 115 pp.

  • Rinehart, R. E., 2010: Radar for Meteorologists. Rinehart Publications, 482 pp.

  • Roeder, W. P., T. M. McNamara, B. F. Boyd, and F. J. Merceret, 2009: The new weather radar for America’s space program in Florida: An overview. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10B.6, https://ams.confex.com/ams/34Radar/techprogram/paper_154184.htm.

  • Roeder, W. P., L. L. Huddleston, W. H. Bauman, and K. B. Doser, 2014: Weather research requirements to improve space launch from Cape Canaveral Air Force Station and NASA Kennedy Space Center. 2014 Space Traffic Management Conf., Daytona Beach, FL, Embry-Riddle Aeronautical University, 14, http://commons.erau.edu/cgi/viewcontent.cgi?article=1027&context=stm.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholten, C. A., 2013: Dual-polarimetric radar characteristics of convective-wind-producing thunderstorms over Kennedy Space Center. M.S. thesis, Dept. of Atmospheric Science and Chemistry, Plymouth State University, 108 pp.

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. Forecasting, 19, 240250, https://doi.org/10.1175/1520-0434(2004)019<0240:ADDPAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsukamoto, N., H. Yamauchi, H. Okumura, A. Umehara, and Y. Kajiwara, 2016: JMA’s C-band dual-polarization Doppler weather radars with SSPAs. CIMO TECO 2016, Madrid, Spain, WMO, P2(68), https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-125_TECO_2016/Session_2/P2(68)%20Tsukamoto_JMA-radars.pdf.

  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and K. W. Howard, 2009: Investigation of a severe downburst storm near Phoenix, Arizona, as seen by a mobile Doppler radar and the KIWA WSR-88D. Wea. Forecasting, 24, 856867, https://doi.org/10.1175/2008WAF2222117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., M. Montopoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. J. Appl. Meteor. Climatol., 51, 405425, https://doi.org/10.1175/JAMC-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the High Plains. Mon. Wea. Rev., 113, 11311143, https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zhang, P.-L. Chang, C. Langston, B. Kaney, and L. Tang, 2016: 2016: Operational C-band dual-polarization radar QPE for the subtropical complex terrain of Taiwan. Adv. Meteor., 2016, 4294271, https://dx.doi.org/10.1155/2016/4294271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. M., and W. P. Roeder, 1996: Forecasting wet microburst on the central Florida Atlantic coast in support of the United States space program. 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 654–658.

  • White, P. W., 2015: An exploratory study in nowcasting convective winds using C-band dual polarimetric radar. M.S. thesis, Dept. of Atmospheric Science, The University of Alabama in Huntsville, 104 pp.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525, https://doi.org/10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 735 223 23
PDF Downloads 697 171 21