Incorporating UH Occurrence Time to Ensemble-Derived Tornado Probabilities

Burkely T. Gallo Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Burkely T. Gallo in
Current site
Google Scholar
PubMed
Close
,
Adam J. Clark NOAA/OAR/National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
,
Bryan T. Smith NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Bryan T. Smith in
Current site
Google Scholar
PubMed
Close
,
Richard L. Thompson NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Richard L. Thompson in
Current site
Google Scholar
PubMed
Close
,
Israel Jirak NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Israel Jirak in
Current site
Google Scholar
PubMed
Close
, and
Scott R. Dembek Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Scott R. Dembek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Probabilistic ensemble-derived tornado forecasts generated from convection-allowing models often use hourly maximum updraft helicity (UH) alone or in combination with environmental parameters as a proxy for right-moving (RM) supercells. However, when UH occurrence is a condition for tornado probability generation, false alarm areas can occur from UH swaths associated with nocturnal mesoscale convective systems, which climatologically produce fewer tornadoes than RM supercells. This study incorporates UH timing information with the forecast near-storm significant tornado parameter (STP) to calibrate the forecast tornado probability. To generate the probabilistic forecasts, three sets of observed climatological tornado frequencies given an RM supercell and STP value are incorporated with the model output, two of which use UH timing information. One method uses the observed climatological tornado frequency for a given 3-h window to generate the probabilities. Another normalizes the observed climatological tornado frequency by the number of hail, wind, and tornado reports observed in that 3-h window compared to the maximum number of reports in any 3-h window. The final method is independent of when UH occurs and uses the observed climatological tornado frequency encompassing all hours. The normalized probabilities reduce the false alarm area compared to the other methods but have a smaller area under the ROC curve and require a much higher percentile of the STP distribution to be used in probability generation to become reliable. Case studies demonstrate that the normalized probabilities highlight the most likely area for evening RM supercellular tornadoes, decreasing the nocturnal false alarm by assuming a linear convective mode.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Burkely T. Gallo, burkely.twiest@noaa.gov

Abstract

Probabilistic ensemble-derived tornado forecasts generated from convection-allowing models often use hourly maximum updraft helicity (UH) alone or in combination with environmental parameters as a proxy for right-moving (RM) supercells. However, when UH occurrence is a condition for tornado probability generation, false alarm areas can occur from UH swaths associated with nocturnal mesoscale convective systems, which climatologically produce fewer tornadoes than RM supercells. This study incorporates UH timing information with the forecast near-storm significant tornado parameter (STP) to calibrate the forecast tornado probability. To generate the probabilistic forecasts, three sets of observed climatological tornado frequencies given an RM supercell and STP value are incorporated with the model output, two of which use UH timing information. One method uses the observed climatological tornado frequency for a given 3-h window to generate the probabilities. Another normalizes the observed climatological tornado frequency by the number of hail, wind, and tornado reports observed in that 3-h window compared to the maximum number of reports in any 3-h window. The final method is independent of when UH occurs and uses the observed climatological tornado frequency encompassing all hours. The normalized probabilities reduce the false alarm area compared to the other methods but have a smaller area under the ROC curve and require a much higher percentile of the STP distribution to be used in probability generation to become reliable. Case studies demonstrate that the normalized probabilities highlight the most likely area for evening RM supercellular tornadoes, decreasing the nocturnal false alarm by assuming a linear convective mode.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Burkely T. Gallo, burkely.twiest@noaa.gov
Save
  • Clark, A. J., 2017: Generation of ensemble mean precipitation forecasts from convection-allowing ensembles. Wea. Forecasting, 32, 15691583, https://doi.org/10.1175/WAF-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9, 619624, https://doi.org/10.1175/1520-0434(1994)009<0619:AFSTCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, and S. R. Dembek, 2016: Forecasting tornadoes using convection-permitting ensembles. Wea. Forecasting, 31, 273295, https://doi.org/10.1175/WAF-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., A. J. Clark, B. T. Smith, R. L. Thompson, I. Jirak, and S. R. Dembek, 2018: Blended probabilistic tornado forecasts: Combining climatological frequencies with NSSL-WRF ensemble forecasts. Wea. Forecasting, 33, 443460, https://doi.org/10.1175/WAF-D-17-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., and H. E. Brooks, 2017: Determining criteria for missed events to evaluate significant severe convective outlooks. Wea. Forecasting, 32, 13211328, https://doi.org/10.1175/WAF-D-16-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2017: Comparison of next-day probabilistic severe weather forecasts from coarse- and fine-resolution CAMs and a convection-allowing ensemble. Wea. Forecasting, 32, 14031421, https://doi.org/10.1175/WAF-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Naylor, J., M. S. Gilmore, R. L. Thompson, R. Edwards, and R. B. Wilhelmson, 2012: Comparison of objective supercell identification techniques using an idealized cloud model. Mon. Wea. Rev., 140, 20902102, https://doi.org/10.1175/MWR-D-11-00209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and J. S. Kain, 2017: Seasonal variations in severe weather forecast skill in an experimental convection-allowing model. Wea. Forecasting, 32, 18851902, https://doi.org/10.1175/WAF-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, C. S. Schwartz, D. J. Gagne II, and M. L. Weisman, 2016a: Explicit forecasts of low-level rotation from convection-allowing models for next-day tornado prediction. Wea. Forecasting, 31, 15911614, https://doi.org/10.1175/WAF-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016b: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and Coauthors, 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1202 766 222
PDF Downloads 415 67 9