Seasonal Prediction of North Atlantic Accumulated Cyclone Energy and Major Hurricane Activity

Kyle Davis Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Kyle Davis in
Current site
Google Scholar
PubMed
Close
and
Xubin Zeng Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Xubin Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Building upon our previous seasonal hurricane prediction model, here we develop two statistical models to predict the number of major hurricanes (MHs) and accumulated cyclone energy (ACE) in the North Atlantic basin using monthly data from March to May for an early June forecast. The input data include zonal pseudo–wind stress to the 3/2 power, sea surface temperature in the North Atlantic, and, depending on the magnitude of the Atlantic multidecadal oscillation index, the multivariate ENSO index. From 1968 to 2017, these models have a mean absolute error of 0.96 storms for MHs and 30 units for ACE. When tested over an independent period from 1958 to 1967, the models show a 22% improvement for MHs and 16% for ACE over a no-skill metric based on a 5-yr running average. Both the MH and ACE results show consistent improvements over those produced by three other centers using statistical–dynamical hybrid models and a 5-yr running average prediction over the period 2000–17 for MHs (2003–17 for ACE) in a simulated real-time prediction. These improvements vary from 25% to 37% for MHs and from 15% to 37% for ACE. While most forecasting centers called for a slightly above-average hurricane season in May/June 2017, our models predicted in June 2017 a very active season, in much better agreement with observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle Davis, davis7000@gmail.com

Abstract

Building upon our previous seasonal hurricane prediction model, here we develop two statistical models to predict the number of major hurricanes (MHs) and accumulated cyclone energy (ACE) in the North Atlantic basin using monthly data from March to May for an early June forecast. The input data include zonal pseudo–wind stress to the 3/2 power, sea surface temperature in the North Atlantic, and, depending on the magnitude of the Atlantic multidecadal oscillation index, the multivariate ENSO index. From 1968 to 2017, these models have a mean absolute error of 0.96 storms for MHs and 30 units for ACE. When tested over an independent period from 1958 to 1967, the models show a 22% improvement for MHs and 16% for ACE over a no-skill metric based on a 5-yr running average. Both the MH and ACE results show consistent improvements over those produced by three other centers using statistical–dynamical hybrid models and a 5-yr running average prediction over the period 2000–17 for MHs (2003–17 for ACE) in a simulated real-time prediction. These improvements vary from 25% to 37% for MHs and from 15% to 37% for ACE. While most forecasting centers called for a slightly above-average hurricane season in May/June 2017, our models predicted in June 2017 a very active season, in much better agreement with observations.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kyle Davis, davis7000@gmail.com
Save
  • Bell, G. D., and Coauthors, 2000: Climate Assessment for 1999. Bull. Amer. Meteor. Soc., 81 (6), S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: Hurricane Harvey. National Hurricane Center Tropical Cyclone Rep., 76 pp., https://www.nhc.noaa.gov/data/tcr/AL092017 _Harvey.pdf.

  • Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: Hurricane Irma. National Hurricane Center Tropical Cyclone Rep., 111 pp., https://www.nhc.noaa.gov/data /tcr/AL112017_Irma.pdf.

  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K., X. Zeng, and E. A. Ritchie, 2015: A new statistical model for predicting seasonal North Atlantic hurricane activity. Wea. Forecasting, 30, 730741, https://doi.org/10.1175/WAF-D-14-00156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor screening. J. Climate, 22, 331345, https://doi.org/10.1175/2008JCLI2414.1.

  • Elsner, J. B., and C. P. Schmertmann, 1993: Improving extended-range seasonal predictions of intense Atlantic hurricane activity. Wea. Forecasting, 8, 345351, https://doi.org/10.1175/1520-0434(1993)008<0345:IERSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2006: Prediction models for annual U.S. hurricane counts. J. Climate, 19, 29352952, https://doi.org/10.1175/JCLI3729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, https://doi.org/10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 7386, https://doi.org/10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., J.-K. E. Schemm, H. Wang, and C. A. Finan, 2017: NMME-based hybrid prediction of Atlantic hurricane season activity. Climate Dyn., https://doi.org/10.1007/s00382-017-3891-7, in press.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and P. J. Webster, 2010: Extended-range seasonal hurricane forecasts for the North Atlantic with a hybrid dynamical–statistical model. Geophys. Res. Lett., 37, L21705, https://doi.org/10.1029/2010GL044792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: El Niño–Southern Oscillation’s impact on Atlantic basin hurricanes and U.S. landfalls. J. Climate, 24, 12521263, https://doi.org/10.1175/2010JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10, 789804, https://doi.org/10.1175/1520-0442(1997)010<0789:IOSSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. A. Businger, 1994: Atmosphere–Ocean Interaction. Oxford University Press, 362 pp.

    • Crossref
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2016: Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Climate, 29, 79777989, https://doi.org/10.1175/JCLI-D-16-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmen, E., 1948: On the formation and structure of tropical hurricanes. Geophysica, 3, 2638.

  • Smith, S. R., J. Servain, D. M. Legler, J. N. Stricherz, M. A. Bourassa, and J. J. O’Brien, 2004: In situ–based pseudo–wind stress products for the tropical oceans. Bull. Amer. Meteor. Soc., 85, 979994, https://doi.org/10.1175/BAMS-85-7-979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, https://doi.org/10.1029/2004GL021072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truchelut, R. E., and E. M. Staehling, 2017: An energetic perspective on United States tropical cyclone landfall droughts. Geophys. Res. Lett., 44, 12 01312 019, https://doi.org/10.1002/2017GL076071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746, https://doi.org/10.1175/2010JCLI3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Climate, 25, 625637, https://doi.org/10.1175/JCLI-D-11-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Multiseason lead forecast of the North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 36313643, https://doi.org/10.1175/JCLI-D-12-00448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., B. Luitel, G. A. Vecchi, and J. Ghosh, 2016: Multi-model ensemble forecasting of North Atlantic tropical cyclone activity. Climate Dyn., https://doi.org/10.1007/s00382-016-3369-z, in press.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Report from expert meeting to evaluate skill of tropical cyclone seasonal forecasts. World Meteorological Organization Tech. Doc. 1455, 27 pp.

  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, 52–57.

  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612, https://doi.org/10.1175/1520-0442-16.10.1601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using the TOGA COARE and TAO data. J. Climate, 11, 26282644, https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 843 322 48
PDF Downloads 629 200 32