Estimates of Gradients in Radar Moments Using a Linear Least Squares Derivative Technique

Matthew C. Mahalik Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew C. Mahalik in
Current site
Google Scholar
PubMed
Close
,
Brandon R. Smith Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Brandon R. Smith in
Current site
Google Scholar
PubMed
Close
,
Kimberly L. Elmore Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kimberly L. Elmore in
Current site
Google Scholar
PubMed
Close
,
Darrel M. Kingfield Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Darrel M. Kingfield in
Current site
Google Scholar
PubMed
Close
,
Kiel L. Ortega Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kiel L. Ortega in
Current site
Google Scholar
PubMed
Close
, and
Travis M. Smith Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Travis M. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The local, linear, least squares derivative (LLSD) approach to radar analysis is a method of quantifying gradients in radar data by fitting a least squares plane to a neighborhood of range bins and finding its slope. When applied to radial velocity fields, for example, LLSD yields part of the azimuthal (rotational) and radial (divergent) components of horizontal shear, which, under certain geometric assumptions, estimate one-half of the two-dimensional vertical vorticity and horizontal divergence equations, respectively. Recent advances in computational capacity as well as increased usage of LLSD products by the meteorological community have motivated an overhaul of the LLSD methodology’s application to radar data. This paper documents the mathematical foundation of the updated LLSD approach, including a complete derivation of its equation set, discussion of its limitations, and considerations for other types of implementation. In addition, updated azimuthal shear calculations are validated against theoretical vorticity using simulated circulations. Applications to nontraditional radar data and new applications to nonvelocity radar data including reflectivity at horizontal polarization, spectrum width, and polarimetric moments are also explored. These LLSD gradient calculations may be leveraged to identify and interrogate a wide variety of severe weather phenomena, either directly by operational forecasters or indirectly as part of future automated algorithms.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Mahalik, matthew.mahalik@noaa.gov

Abstract

The local, linear, least squares derivative (LLSD) approach to radar analysis is a method of quantifying gradients in radar data by fitting a least squares plane to a neighborhood of range bins and finding its slope. When applied to radial velocity fields, for example, LLSD yields part of the azimuthal (rotational) and radial (divergent) components of horizontal shear, which, under certain geometric assumptions, estimate one-half of the two-dimensional vertical vorticity and horizontal divergence equations, respectively. Recent advances in computational capacity as well as increased usage of LLSD products by the meteorological community have motivated an overhaul of the LLSD methodology’s application to radar data. This paper documents the mathematical foundation of the updated LLSD approach, including a complete derivation of its equation set, discussion of its limitations, and considerations for other types of implementation. In addition, updated azimuthal shear calculations are validated against theoretical vorticity using simulated circulations. Applications to nontraditional radar data and new applications to nonvelocity radar data including reflectivity at horizontal polarization, spectrum width, and polarimetric moments are also explored. These LLSD gradient calculations may be leveraged to identify and interrogate a wide variety of severe weather phenomena, either directly by operational forecasters or indirectly as part of future automated algorithms.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew Mahalik, matthew.mahalik@noaa.gov
Save
  • Alexander, C. R., and J. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4, http://ams.confex.com/ams/pdfpapers/141821.pdf.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, https://doi.org/10.1023/A:1010933404324.

  • Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., V. T. Wood, and D. Sirmans, 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, https://doi.org/10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., B. A. Flickinger, E. Forren, D. M. Schultz, D. Sirmans, P. L. Spencer, V. T. Wood, and C. L. Ziegler, 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314, https://doi.org/10.1175/WAF832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and M. A. Baxter, 2011: Radar tornadic debris signatures on 27 April 2011. Electron. J. Oper. Meteor., 12, 16.

  • Burgess, D. W., L. R. Lemon, and R. A. Brown, 1975: Tornado characteristics revealed by Doppler radar. Geophys. Res. Lett., 2, 183184, https://doi.org/10.1029/GL002i005p00183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., R. J. Donaldson Jr., and P. R. Desrochers, 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

    • Crossref
    • Export Citation
  • Burgess, D. W., M. A. Magsig, J. Wurman, D. C. Dowell, and Y. Richardson, 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, https://doi.org/10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., E. R. Mansell, C. M. Schwarz, and B. J. Allen, 2010: Tornado and tornadogenesis events seen by the NOXP X-band, dual-polarization radar during VORTEX2 2010. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.2, http://ams.confex.com/ams/25SLS/techprogram/paper_176164.htm.

  • Burgess, D. W., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, https://doi.org/10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. G., J. W. Conway, N. A. Crook, and M. W. Moncrief, 1990: The generation and propagation of a nocturnal squall line, Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J. M., and M. D. Parker, 2014: Radar climatology of tornadic and nontornadic vortices in higher-shear, low-CAPE environments in the mid-Atlantic and southeastern United States. Wea. Forecasting, 29, 828853, https://doi.org/10.1175/WAF-D-13-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawson, L. C., G. S. Romine, R. J. Trapp, and M. E. Baldwin, 2017: Verifying supercellular rotation in a convection-permitting ensemble forecasting system with radar-derived rotation track data. Wea. Forecasting, 32, 781795, https://doi.org/10.1175/WAF-D-16-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., Jr., 1970: Vortex signature recognition by a Doppler radar. J. Appl. Meteor., 9, 661670, https://doi.org/10.1175/1520-0450(1970)009<0661:VSRBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J., Jr, 1978: Observations of the Union City tornadic storm by plan shear indicator. Mon. Wea. Rev., 106, 3947, https://doi.org/10.1175/1520-0493(1978)106<0039:OOTUCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elmore, K. E., E. D. Albo, R. K. Goodrich, and D. J. Peters, 1994: NASA/NCAR airborne and ground-based wind shear studies. Final Rep., Contract NCC1-155, 343 pp.

  • Fujita, T. T., 1973: Proposed mechanism of tornado formation from rotating thunderstorms. Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 191–196.

  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044, https://doi.org/10.1175/WAF-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, T., G. Yang, and G. Tang, 1979: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process., 27, 1318, https://doi.org/10.1109/TASSP.1979.1163188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isom, B. M., and Coauthors, 2007: Characterization and mitigation of wind turbine clutter on the WSR-88D network. 33rd Conf. on Radar Meteorology, Cairns, Queensland, Australia, Amer. Meteor. Soc., 8B.8, https://ams.confex.com/ams/33Radar/webprogram/Paper123300.html.

  • Istok, M. J., and Coauthors, 2009: WSR-88D dual polarization initial operating capabilities. 25th Conf. on Int. Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5, http://ams.confex.com/ams/pdfpapers/148927.pdf.

  • Karstens, C. D., and Coauthors, 2016: Evaluation of near real-time preliminary tornado damage paths. J. Oper. Meteor., 4, 132141, https://doi.org/10.15191/nwajom.2016.0410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, J. C. Snyder, K. A. Wilson, D. A. Speheger, and J. E. Hocker, 2017: An evaluation of radar-based tornado track estimation products by Oklahoma public safety officials. Wea. Forecasting, 32, 17111726, https://doi.org/10.1175/WAF-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, https://doi.org/10.1175/JAM2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007b: The Warning Decision Support System-Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manross, K. L., T. M. Smith, J. T. Ferree, and G. J. Stumpf, 2008: An on-demand user interface for requesting multi-radar, multi-sensor time accumulated products to support severe weather verification. 24th Conf. on Interactive Information Processing Systems, New Orleans, LA, Amer. Meteor. Soc., P2.13, https://ams.confex.com/ams/88Annual/techprogram/paper_134621.htm.

  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. L., V. Lakshmanan, and T. M. Smith, 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, https://doi.org/10.1175/WAF-D-12-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. T. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, https://doi.org/10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. Richman, and T. M. Smith, 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211, https://doi.org/10.1175/WAF-D-11-00154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., D. W. Burgess, K. L. Elmore, M. C. Mahalik, and B. R. Smith, 2018: Severe weather algorithm development and improvement activities for the WSR-88D at NSSL/CIMMS under the ROC tech transfer MOU. 29th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 12A.4, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper344948.html.

  • Park, H.-S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piltz, S. F., and D. W. Burgess, 2009: The impacts of thunderstorm geometry and WSR-88D beam characteristics on diagnosing supercell tornadoes. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P6.18, https://ams.confex.com/ams/34Radar/techprogram/paper_155944.htm.

  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detections. Wea. Forecasting, 10, 203218, https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor. Climatol., 28, 285303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, https://doi.org/10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor. Climatol., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidhuber, J., 2015: Deep learning in neural networks: An overview. Neural Networks, 61, 85117, https://doi.org/10.1016/j.neunet.2014.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmocker, G. K., R. W. Przybylinski, and Y. J. Lin, 1996: Forecasting the initial onset of damaging downburst winds associated with a Mesoscale Convective System (MCS) using the Mid-Altitude Radial Convergence (MARC) signature. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 306–311.

  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, https://doi.org/10.1175/WAF-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivatives to diagnose rotation and divergence. Preprints, 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6, http://ams.confex.com/ams/pdfpapers/81827.pdf.

  • Smith, T. M., K. L. Elmore, and S. A. Dulin, 2004: A damaging downburst prediction and detection algorithm for the WSR-88D. Wea. Forecasting, 19, 240250, https://doi.org/10.1175/1520-0434(2004)019<0240:ADDPAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Climatol., 54, 18611870, https://doi.org/10.1175/JAMC-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, H. B. Bluestein, and S. F. Blair, 2014: Polarimetric analysis of two giant-hail producing supercells by X-band and S-band radars. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 166, https://ams.confex.com/ams/27SLS/webprogram/Paper255455.html.

  • Snyder, J. C., A. V. Ryzhkov, J. Krause, and C. Kuster, 2017: Identifying polarimetric radar signatures aloft associated with large and giant hail. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 237, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/321184.

  • Spratt, S. M., D. W. Sharp, P. Welsh, A. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12, 479501, https://doi.org/10.1175/1520-0434(1997)012<0479:AWAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stough, S. M., L. D. Carey, C. J. Schultz, and P. M. Bitzer, 2017: Investigating the relationship between lightning and mesocyclonic rotation in supercell thunderstorms. Wea. Forecasting, 32, 22372259, https://doi.org/10.1175/WAF-D-17-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., and Coauthors, 2012: The Experimental Warning Program’s 2011 and 2012 Spring Experiments at the NOAA Hazardous Weather Testbed. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 3.4, https://ams.confex.com/ams/26SLS/webprogram/Paper212324.html.

  • Thompson, R. L., and Coauthors, 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 5B.10, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.

  • Wienhoff, Z. B., H. B. Bluestein, L. J. Wicker, J. C. Snyder, A. Shapiro, C. K. Potvin, and D. W. Reif, 2017: An analysis of the evolution and structure of a multiple-tornado-producing supercell near Dodge City, KS, on 24 May 2016. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 147, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320832.

  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhouser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, https://doi.org/10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., R. A. Brown, and Z. Jing, 2009: Performance of a new velocity dealiasing algorithm for the WSR-88D. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.8, https://ams.confex.com/ams/34Radar/techprogram/paper_155951.htm.

  • Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and R. A. Brown, 2011: Simulate tornadic vortex signatures of tornado-like vortices having one- and two-celled structures. J. Appl. Meteor. Climatol., 50, 23382342, https://doi.org/10.1175/JAMC-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., R. R. Lee, E. D. Mitchell, and D. Sirmans, 2001: Environmental and signal processing conditions that negatively impact the performance of the WSR-88D tornado detection algorithm. 30th Int. Conf. on Radar, Munich Germany, Amer. Meteor. Soc., 12B.6, https://ams.confex.com/ams/pdfpapers/19862.pdf.

  • Zrnić, D. S., and R. J. Doviak, 1975: Velocity spectra of vortices scanned with a pulse-Doppler radar. J. Appl. Meteor., 14, 15311539, https://doi.org/10.1175/1520-0450(1975)014<1531:VSOVSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2426 1116 48
PDF Downloads 1605 359 13