Examination of the Predictability of Nocturnal Tornado Events in the Southeastern United States

Ryan C. Bunker Center for Analysis and Prediction of Storms National Weather Center Research Experiences for Undergraduates Program, and University of Oklahoma, Norman, Oklahoma

Search for other papers by Ryan C. Bunker in
Current site
Google Scholar
PubMed
Close
,
Ariel E. Cohen NOAA/NWS/Storm Prediction Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ariel E. Cohen in
Current site
Google Scholar
PubMed
Close
,
John A. Hart NOAA/NWS/Storm Prediction Center, Norman, Oklahoma

Search for other papers by John A. Hart in
Current site
Google Scholar
PubMed
Close
,
Alan E. Gerard Warning Research and Development Division/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alan E. Gerard in
Current site
Google Scholar
PubMed
Close
,
Kim E. Klockow-McClain Cooperative Institute for Mesoscale Meteorological Studies/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kim E. Klockow-McClain in
Current site
Google Scholar
PubMed
Close
, and
David P. Nowicki Center for Analysis and Prediction of Storms National Weather Center Research Experiences for Undergraduates Program, University of Oklahoma, Norman, Oklahoma, and University of Mississippi, Oxford, Mississippi

Search for other papers by David P. Nowicki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tornadoes that occur at night pose particularly dangerous societal risks, and these risks are amplified across the southeastern United States. The purpose of this study is to highlight some of the characteristics distinguishing the convective environment accompanying these events. This is accomplished by building upon previous research that assesses the predictive power of meteorological parameters. In particular, this study uses the Statistical Severe Convective Risk Assessment Model (SSCRAM) to determine how well convective parameters explain tornado potential across the Southeast during the months of November–May and during the 0300–1200 UTC (nocturnal) time frame. This study compares conditional tornado probabilities across the Southeast during November–May nocturnal hours to those probabilities for all other November–May environments across the contiguous United States. This study shows that effective bulk shear, effective storm-relative helicity, and effective-layer significant tornado parameter yield the strongest predictability for the November–May nocturnal Southeast regime among investigated parameters. This study demonstrates that November–May southeastern U.S. nocturnal predictability is generally similar to that within other regimes across the contiguous United States. However, selected ranges of multiple parameters are associated with slightly better predictability for the nocturnal Southeast regime. Additionally, this study assesses conditional November–May nocturnal tornado probabilities across a coastal domain embedded within the Southeast. Nocturnal coastal tornado predictability is shown to generally be lower than the other regimes. All of the differences highlight several forecast challenges, which this study analyzes in detail.

Current affiliation: National Weather Service Forecast Office, Topeka, Kansas and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: National Weather Service Forecast Office, Miami, Florida.

Current affiliation: University of Mississippi, Oxford, Mississippi.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan C. Bunker, Ryan.Bunker@noaa.gov

Abstract

Tornadoes that occur at night pose particularly dangerous societal risks, and these risks are amplified across the southeastern United States. The purpose of this study is to highlight some of the characteristics distinguishing the convective environment accompanying these events. This is accomplished by building upon previous research that assesses the predictive power of meteorological parameters. In particular, this study uses the Statistical Severe Convective Risk Assessment Model (SSCRAM) to determine how well convective parameters explain tornado potential across the Southeast during the months of November–May and during the 0300–1200 UTC (nocturnal) time frame. This study compares conditional tornado probabilities across the Southeast during November–May nocturnal hours to those probabilities for all other November–May environments across the contiguous United States. This study shows that effective bulk shear, effective storm-relative helicity, and effective-layer significant tornado parameter yield the strongest predictability for the November–May nocturnal Southeast regime among investigated parameters. This study demonstrates that November–May southeastern U.S. nocturnal predictability is generally similar to that within other regimes across the contiguous United States. However, selected ranges of multiple parameters are associated with slightly better predictability for the nocturnal Southeast regime. Additionally, this study assesses conditional November–May nocturnal tornado probabilities across a coastal domain embedded within the Southeast. Nocturnal coastal tornado predictability is shown to generally be lower than the other regimes. All of the differences highlight several forecast challenges, which this study analyzes in detail.

Current affiliation: National Weather Service Forecast Office, Topeka, Kansas and School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Current affiliation: National Weather Service Forecast Office, Miami, Florida.

Current affiliation: University of Mississippi, Oxford, Mississippi.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan C. Bunker, Ryan.Bunker@noaa.gov
Save
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J117–J120.

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619–647.

    • Crossref
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, and H. E. Brooks, 2015: A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Wea. Forecasting, 30, 591612, https://doi.org/10.1175/WAF-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., S. M. Cavallo, M. C. Coniglio, H. E. Brooks, and I. L. Jirak, 2017: Evaluation of multiple planetary boundary layer parameterization schemes in southeast United States cold season severe thunderstorm environments. Wea. Forecasting, 32, 18571884, https://doi.org/10.1175/WAF-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and A. Fischer, 2009: Environmental characteristics associated with nighttime tornadoes. Electron. J. Oper. Meteor., 10 (3), http://nwafiles.nwas.org/ej/pdf/2009-EJ3.pdf.].

    • Search Google Scholar
    • Export Citation
  • Devore, J. L., 2015: Probability and Statistics for Engineering and the Sciences. 9th ed. Cengage Learning, 768 pp.

  • Galway, J. O., 1992: Early severe thunderstorm forecasting and research by the United States Weather Bureau. Wea. Forecasting, 7, 564587, https://doi.org/10.1175/1520-0434(1992)007<0564:ESTFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyer, J. L., and A. R. Dean, 2010: Tornadoes within weak CAPE environments across the continental United States. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 1.5, https://ams.confex.com/ams/25SLS/techprogram/paper_175725.htm.

  • Guyer, J. L., and A. R. Dean, 2015: Tornadoes associated with an absence of cloud-to-ground lightning. Extended Abstract, 40th National Weather Association Annual Meeting, Oklahoma City, OK, NWA, AP-26.

  • Guyer, J. L., A. Kis, K. Venable, and D. A. Imy, 2006: Cool season significant (F2–F5) tornadoes in the Gulf Coast states. 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 4.2, https://ams.confex.com/ams/23SLS/techprogram/paper_115320.htm.

  • Hart, J. A., and A. E. Cohen, 2016a: The challenge of forecasting significant tornadoes from June to October using convective parameters. Wea. Forecasting, 31, 20752084, https://doi.org/10.1175/WAF-D-16-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and A. E. Cohen, 2016b: The statistical severe convective risk assessment model. Wea. Forecasting, 31, 16971714, https://doi.org/10.1175/WAF-D-16-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J., 1989: Real time lightning data and its application in forecasting convective activity. Preprints, 12th Conf. on Weather Analysis and Forecasting, Monterey, CA, Amer. Meteor. Soc., 97–102.

  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2007: Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Wea. Rev., 135, 25682587, https://doi.org/10.1175/MWR3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1, 164189, https://doi.org/10.1175/1520-0434(1986)001<0164:STFAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, https://doi.org/10.1175/WAF-D-13-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and J. F. W. Purdom, 1986: The use of satellite data for mesoscale analyses and forecasting applications. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 118–150.

    • Crossref
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm Prediction Center, 2013a: Storm Prediction Center National Severe Weather database browser: Online SeverePlot 3.0. NOAA, accessed 20 September 2013, http://www.spc.noaa.gov/climo/online/sp3/plot.php.

  • Storm Prediction Center, 2013b: SPC hourly mesoscale analysis. NOAA, accessed 4 October 2013, http://www.spc.noaa.gov/exper/ma_archive/.

  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4942 4152 35
PDF Downloads 709 108 11