Antecedent North Pacific Jet Regimes Conducive to the Development of Continental U.S. Extreme Temperature Events during the Cool Season

Andrew C. Winters Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Andrew C. Winters in
Current site
Google Scholar
PubMed
Close
,
Lance F. Bosart Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Lance F. Bosart in
Current site
Google Scholar
PubMed
Close
, and
Daniel Keyser Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Daniel Keyser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study considers the development of continental U.S. extreme temperature events (ETEs) during the cool season (September–May), where extreme temperatures are defined in terms of percentiles and events are defined in terms of the spatial coverage of extreme temperatures. Following their identification, ETEs are classified into geographic clusters and stratified based on the state of the North Pacific jet (NPJ) stream prior to ETE initiation using an NPJ phase diagram. The NPJ phase diagram is developed from the two leading modes of NPJ variability during the cool season. The first mode corresponds to a zonal extension or retraction of the exit region of the climatological NPJ, while the second mode corresponds to a poleward or equatorward shift of the exit region of the climatological NPJ. The projection of 250-hPa zonal wind anomalies onto the NPJ phase diagram prior to ETEs demonstrates that the preferred state and evolution of the NPJ prior to ETEs varies considerably based on the geographic location of ETE initiation and the season. Southern plains extreme warm events are an exception, however, since extreme warm events in that location most frequently initiate following a retracted NPJ during all seasons. The NPJ phase diagram is subsequently utilized to examine a synoptic-scale flow evolution highly conducive to the initiation of southern plains extreme warm events via composite analysis. The composite analysis demonstrates that a retracted NPJ supports an amplification of the upper-tropospheric flow pattern over North America, which then induces persistent lower-tropospheric warm-air advection over the southern plains prior to ETE initiation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew C. Winters, acwinters@albany.edu

Abstract

This study considers the development of continental U.S. extreme temperature events (ETEs) during the cool season (September–May), where extreme temperatures are defined in terms of percentiles and events are defined in terms of the spatial coverage of extreme temperatures. Following their identification, ETEs are classified into geographic clusters and stratified based on the state of the North Pacific jet (NPJ) stream prior to ETE initiation using an NPJ phase diagram. The NPJ phase diagram is developed from the two leading modes of NPJ variability during the cool season. The first mode corresponds to a zonal extension or retraction of the exit region of the climatological NPJ, while the second mode corresponds to a poleward or equatorward shift of the exit region of the climatological NPJ. The projection of 250-hPa zonal wind anomalies onto the NPJ phase diagram prior to ETEs demonstrates that the preferred state and evolution of the NPJ prior to ETEs varies considerably based on the geographic location of ETE initiation and the season. Southern plains extreme warm events are an exception, however, since extreme warm events in that location most frequently initiate following a retracted NPJ during all seasons. The NPJ phase diagram is subsequently utilized to examine a synoptic-scale flow evolution highly conducive to the initiation of southern plains extreme warm events via composite analysis. The composite analysis demonstrates that a retracted NPJ supports an amplification of the upper-tropospheric flow pattern over North America, which then induces persistent lower-tropospheric warm-air advection over the southern plains prior to ETE initiation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew C. Winters, acwinters@albany.edu
Save
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, https://doi.org/10.1175/2009JAS3270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, https://doi.org/10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentley, A. M., 2018: Extratropical cyclones leading to extreme weather events over central and eastern North America. Ph.D. dissertation, University at Albany, State University of New York, 158 pp.

  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 12451273, https://doi.org/10.1175/MWR-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., C. F. Mass, and B. E. Potter, 2012: The West Coast thermal trough: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 38203843, https://doi.org/10.1175/MWR-D-12-00078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., C. F. Mass, and B. E. Potter, 2013: The West Coast thermal trough: Mesoscale evolution and sensitivity to terrain and surface fluxes. Mon. Wea. Rev., 141, 28692896, https://doi.org/10.1175/MWR-D-12-00305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., R. W. Higgins, and V. E. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking over the northeast Pacific. J. Climate, 17, 48234839, https://doi.org/10.1175/JCLI-3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, https://doi.org/10.1029/2005JD006273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and C. F. Mass, 1995: The structure and evolution of cold surges east of the Rocky Mountains. Mon. Wea. Rev., 123, 25772610, https://doi.org/10.1175/1520-0493(1995)123<2577:TSAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and J. C. Davenport, 1987: Rapid surface anticyclogenesis: Synoptic climatology and attendant large-scale circulation changes. Mon. Wea. Rev., 115, 822836, https://doi.org/10.1175/1520-0493(1987)115<0822:RSASCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. R., and J. T. Schaefer, 2008: The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Mon. Wea. Rev., 136, 31213137, https://doi.org/10.1175/2007MWR2171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. R., L. M. Leslie, D. B. Parsons, and J. T. Schaefer, 2017: The impact of El Niño–Southern Oscillation (ENSO) on winter and early spring U.S. tornado outbreaks. J. Appl. Meteor. Climatol., 56, 24552478, https://doi.org/10.1175/JAMC-D-16-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and L. F. Bosart, 2010: The antecedent large-scale conditions of the “Perfect Storms” of late October and early November 1991. Mon. Wea. Rev., 138, 25462569, https://doi.org/10.1175/2010MWR3280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, https://doi.org/10.1175/MWR-D-13-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dallavalle, J. P., and L. F. Bosart, 1975: A synoptic investigation of anticyclogenesis accompanying North American polar air outbreaks. Mon. Wea. Rev., 103, 941957, https://doi.org/10.1175/1520-0493(1975)103<0941:ASIOAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2014: The making of an extreme event: Putting the pieces together. Bull. Amer. Meteor. Soc., 95, 427440, https://doi.org/10.1175/BAMS-D-12-00069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downton, M. W., and K. A. Miller, 1993: The freeze risk to Florida citrus. Part II: Temperature variability and circulation patterns. J. Climate, 6, 364372, https://doi.org/10.1175/1520-0442(1993)006<0364:TFRTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., 1982: The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, 92 pp.

    • Crossref
    • Export Citation
  • Gensini, V. A., and A. Marinaro, 2016: Tornado frequency in the United States related to global relative angular momentum. Mon. Wea. Rev., 144, 801810, https://doi.org/10.1175/MWR-D-15-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., T. Shulgina, F. M. Ralph, D. A. Lavers, and J. J. Rutz, 2017: Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett., 44, 79007908, https://doi.org/10.1002/2017GL074175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and J. E. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. J. Climate, 30, 3954, https://doi.org/10.1175/JCLI-D-15-0833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., S.-W. Son, and J. R. Gyakum, 2013: Intraseasonal and interannual variability in North American storm tracks and its relationship to equatorial Pacific variability. Mon. Wea. Rev., 141, 36103625, https://doi.org/10.1175/MWR-D-12-00322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and R. Zhang, 2017: Synoptic analysis of cold air outbreaks over the California Central Valley. J. Climate, 30, 94179433, https://doi.org/10.1175/JCLI-D-17-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, L., P. J. Hanson, W. Mac Post, D. P. Kaiser, B. Yang, R. Nemani, S. G. Pallardy, and T. Meyers, 2008: The 2007 eastern US spring freeze: Increased cold damage in a warming world? BioScience, 58, 253262, https://doi.org/10.1641/B580311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett, 2011: Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys. Res. Lett., 38, L17701, https://doi.org/10.1029/2011GL048762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartjenstein, G., and R. Bleck, 1991: Factors affecting cold-air outbreaks east of the Rocky Mountains. Mon. Wea. Rev., 119, 22802292, https://doi.org/10.1175/1520-0493(1991)119<2280:FACAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., A. Leetmaa, and V. E. Kousky, 2002: Relationships between climate variability and winter temperature extremes in the United States. J. Climate, 15, 15551572, https://doi.org/10.1175/1520-0442(2002)015<1555:RBCVAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Isard, S. A., J. R. Angel, and G. T. VanDyke, 2000: Zones of origin for Great Lakes cyclones in North America, 1899–1996. Mon. Wea. Rev., 128, 474485, https://doi.org/10.1175/1520-0493(2000)128<0474:ZOOFGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., J. E. Martin, D. J. Vimont, and D. J. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, https://doi.org/10.1175/2010JCLI3995.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, J., and G. C. Hegerl, 2008: Influence of modes of climate variability on global temperature extremes. J. Climate, 21, 38723889, https://doi.org/10.1175/2008JCLI2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1996: Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon. Wea. Rev., 124, 10671083, https://doi.org/10.1175/1520-0493(1996)124<1067:RBTIOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, and S. J. Colucci, 1989: An examination of extreme cold air outbreaks over eastern North America. Mon. Wea. Rev., 117, 26872700, https://doi.org/10.1175/1520-0493(1989)117<2687:AEOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., and S. D. Schubert, 2011: The impact of ENSO and the Arctic Oscillation on winter temperature extremes in the southeast United States. Geophys. Res. Lett., 38, L15706, https://doi.org/10.1029/2011GL048283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2014: The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J. Climate, 27, 16001618, https://doi.org/10.1175/JCLI-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828, https://doi.org/10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, S., and Y. Takaya, 2015: Global influence of the Madden–Julian Oscillation on extreme temperature events. J. Climate, 28, 41414151, https://doi.org/10.1175/JCLI-D-14-00625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, H. Teng, and T. C. Peterson, 2007: Current and future U.S. weather extremes and El Niño. Geophys. Res. Lett., 34, L20704, https://doi.org/10.1029/2007GL031027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., 2017: Rossby wave breaking and widespread extreme precipitation events in the central and eastern U.S. Ph.D. dissertation, University at Albany, State University of New York, 188 pp.

  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, https://doi.org/10.1175/MWR-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1978: Multiple causes of the North American abnormal winter 1976–77. Mon. Wea. Rev., 106, 279295, https://doi.org/10.1175/1520-0493(1978)106<0279:MCOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2018: NWS weather fatality, injury, and damage statistics. NOAA/NWS, accessed 27 August 2018, http://www.nws.noaa.gov/om/hazstats.shtml.

  • Peterson, A. G., and J. T. Abatzoglou, 2014: Observed changes in false springs over the contiguous United States. Geophys. Res. Lett., 41, 21562162, https://doi.org/10.1002/2014GL059266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., M. P. Hoerling, P. A. Stott, and S. C. Herring, 2013: Explaining extreme events of 2012 from a climate perspective. Bull. Amer. Meteor. Soc., 94, S1S74, https://doi.org/10.1175/BAMS-D-13-00085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portis, D. H., M. P. Cellitti, W. L. Chapman, and J. E. Walsh, 2006: Low-frequency variability and evolution of North American cold air outbreaks. Mon. Wea. Rev., 134, 579597, https://doi.org/10.1175/MWR3083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. I: An aerological study of blocking action. Tellus, 2A, 196211, https://doi.org/10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, https://doi.org/10.1002/qj.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and R. V. Rohli, 1991: Florida citrus freezes and polar anticyclones in the Great Plains. J. Climate, 4, 11031113, https://doi.org/10.1175/1520-0442(1991)004<1103:FCFAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., N. Sakaeda, K. MacRitchie, and L. Gloeckler, 2017: Weather-climate interactions and MJO influences. Climate Extremes: Patterns and Mechanisms, S.-Y. S. Wang et al., Eds., Amer. Geophys. Union, 139–163, https://doi.org/10.1002/9781119068020.ch9.

    • Crossref
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scherer, M., and N. S. Diffenbaugh, 2014: Transient twenty-first century changes in daily-scale temperature extremes in the United States. Climate Dyn., 42, 13831404, https://doi.org/10.1007/s00382-013-1829-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosis of the downstream ridging associated with extratropical transition using short-term ensemble forecasts. J. Atmos. Sci., 67, 817833, https://doi.org/10.1175/2009JAS3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, https://doi.org/10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J. K., and J. R. Gyakum, 2011: The development of arctic air masses in northwest Canada and their behavior in a warming climate. J. Climate, 24, 46184633, https://doi.org/10.1175/2011JCLI3855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR, 2018: NCEP Climate Forecast System Version 2 (CFSv2) selected hourly time-series products. Frequently asked questions about CFS V2, https://rda.ucar.edu/datasets/ds094.1/#docs/FAQs_hrly_timeseries.html.

  • Vavrus, S., J. E. Walsh, W. L. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 11331147, https://doi.org/10.1002/joc.1301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, https://doi.org/10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westby, R. M., and R. X. Black, 2015: Development of anomalous temperature regimes over the southeastern United States: Synoptic behavior and role of low-frequency modes. Wea. Forecasting, 30, 553570, https://doi.org/10.1175/WAF-D-14-00093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westby, R. M., Y.-Y. Lee, and R. X. Black, 2013: Anomalous temperature regimes during the cool season: Long-term trends, low-frequency mode modulation, and representation in CMIP5 simulations. J. Climate, 26, 90619076, https://doi.org/10.1175/JCLI-D-13-00003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

    • Crossref
    • Export Citation
  • Winters, A. C., D. Keyser, and L. F. Bosart, 2019: The development of the North Pacific jet phase diagram as an objective tool to monitor the state and forecast skill of the upper-tropospheric flow pattern. Wea. Forecasting, 34, 199219, https://doi.org/10.1175/WAF-D-18-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., M. Hoerling, J. K. Eischeid, G. J. van Oldenborgh, X.-W. Quan, J. E. Walsh, T. N. Chase, and R. M. Dole, 2015: How unusual was the cold winter of 2013/14 in the Upper Midwest? Bull. Amer. Meteor. Soc., 96, S10S14, https://doi.org/10.1175/BAMS-D-15-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., R. X. Black, and Y. Deng, 2017: Daily-scale planetary wave patterns and the modulation of cold season weather in the northern extratropics. J. Geophys. Res. Atmos., 122, 83838398, https://doi.org/10.1002/2017JD026768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2016: MJO and extreme weather/climate events. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. Li et al., Eds., Cambridge University Press, 294–300, https://doi.org/10.1017/CBO9781107775541.025.

    • Crossref
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2004 1077 62
PDF Downloads 1060 173 8