Combined Kalman Filter and Universal Kriging to Improve Storm Wind Speed Predictions for the Northeastern United States

Alexander Samalot University of Connecticut, Civil and Environmental Engineering, Storrs, Connecticut

Search for other papers by Alexander Samalot in
Current site
Google Scholar
PubMed
Close
,
Marina Astitha University of Connecticut, Civil and Environmental Engineering, Storrs, Connecticut

Search for other papers by Marina Astitha in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3892-6672
,
Jaemo Yang University of Connecticut, Civil and Environmental Engineering, Storrs, Connecticut

Search for other papers by Jaemo Yang in
Current site
Google Scholar
PubMed
Close
, and
George Galanis Hellenic Naval Academy, Section of Mathematics, Mathematical Modeling and Applications Laboratory, Piraeus, Greece

Search for other papers by George Galanis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The scope of this study is to assess a combination of well-known techniques for bias reduction and spatial interpolation in an attempt to improve wind speed prediction for storms on a gridded domain. This is accomplished by implementing Kalman filter (KF) for bias reduction and universal kriging (UK) for spatial interpolation as postprocessing steps for the Weather Research and Forecasting (WRF) Model. It is shown that for surface wind speed, a linear KF is adequate for eliminating systematic model errors with the available storm history. KF-estimated wind speed biases at station locations are then interpolated across the model domain using UK. The combined KF–UK approach improves the wind speed forecast median bias by 55% and RMSE by 15% (bulk statistics), while benefits obtained at station-specific locations can reach maximum improvements of 72% for RMSE and 100% for bias. Contingency statistics that inform on model performance over four categories of wind speed magnitude reveal that calm/moderate winds are successfully corrected but strong/gale winds cannot be adequately corrected by the combination of KF and UK, which is a disadvantage for improving prediction of severe storm conditions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marina Astitha, marina.astitha@uconn.edu

Abstract

The scope of this study is to assess a combination of well-known techniques for bias reduction and spatial interpolation in an attempt to improve wind speed prediction for storms on a gridded domain. This is accomplished by implementing Kalman filter (KF) for bias reduction and universal kriging (UK) for spatial interpolation as postprocessing steps for the Weather Research and Forecasting (WRF) Model. It is shown that for surface wind speed, a linear KF is adequate for eliminating systematic model errors with the available storm history. KF-estimated wind speed biases at station locations are then interpolated across the model domain using UK. The combined KF–UK approach improves the wind speed forecast median bias by 55% and RMSE by 15% (bulk statistics), while benefits obtained at station-specific locations can reach maximum improvements of 72% for RMSE and 100% for bias. Contingency statistics that inform on model performance over four categories of wind speed magnitude reveal that calm/moderate winds are successfully corrected but strong/gale winds cannot be adequately corrected by the combination of KF and UK, which is a disadvantage for improving prediction of severe storm conditions.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marina Astitha, marina.astitha@uconn.edu
Save
  • Atkinson, D., and R. F. Lee, 1992: Procedures for substituting values for missing NWS meteorological data for use in regulatory air quality models. Environmental Protection Agency, https://www3.epa.gov/ttn/scram/surface/missdata.txt.

  • Cellura, M., G. Cirrincione, A. Marvuglia, and A. Miraoui, 2008: Wind speed spatial estimation for energy planning in Sicily: A neural kriging application. Renewable Energy, 33, 12511266, https://doi.org/10.1016/j.renene.2007.08.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., Y. Liu, Y. Liu, Y. Zhang, W. P. Mahoney, and T. T. Warner, 2013: The impact of model physics on numerical wind forecasts. Renewable Energy, 55, 347356, https://doi.org/10.1016/j.renene.2012.12.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp., https://permanent.access.gpo.gov/gpo60401/19950009331.pdf.

  • Coakley, H., J. Williams, and D. Baker, 2008: Universal kriging interpolator for satellite derived global data. M.S. thesis, Dept. of Electrical and Computer Engineering, Utah State University, 8 pp.

  • Crochet, P., 2004: Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteor. Appl., 11, 173187, https://doi.org/10.1017/S1350482704001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Pondeca, M. S., and Coauthors, 2011: The real-time mesoscale analysis at NOAA’s National Centers for Environmental Prediction: Current status and development. Wea. Forecasting, 26, 593612, https://doi.org/10.1175/WAF-D-10-05037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, X. Deng, Y. Zhou, and R. Stull, 2006: Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res., 111, D05308, https://doi.org/10.1029/2005JD006311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., and Coauthors, 2008: A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone. Tellus, 60B, 238249, https://doi.org/10.1111/j.1600-0889.2007.00332.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, Y. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, https://doi.org/10.1175/2011MWR3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan F., K. Bell, D. Hill, and D. Infield, 2015. Wind forecasting using kriging and vector auto-regressive models for dynamic line rating studies. 2015 IEEE Eindhoven PowerTech Conf., Eindhoven, Netherlands, IEEE, 1–6, https://doi.org/10.1109/PTC.2015.7232348.

    • Crossref
    • Export Citation
  • Frediani, M. E., J. P. Hacker, E. N. Anagnostou, and T. Hopson, 2016: Evaluation of PBL parameterizations for modeling surface wind speed during storms in the northeast United States. Wea. Forecasting, 31, 15111528, https://doi.org/10.1175/WAF-D-15-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., and M. Anadranistakis, 2002: A one dimensional Kalman filter for the correction of near surface temperature forecasts. Meteor. Appl., 9, 437441, https://doi.org/10.1017/S1350482702004061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., P. Louka, P. Katsafados, I. Pytharoulis, and G. Kallos, 2006: Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann. Geophys., 24, 24512460, https://doi.org/10.5194/angeo-24-2451-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., G. Emmanouil, P. Chu, and G. Kallos, 2009: A new methodology for the extension of the impact of data assimilation on ocean wave prediction. Ocean Dyn., 59, 523535, https://doi.org/10.1007/s10236-009-0191-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galanis, G., P. C. Chu, and G. Kallos, 2011: Statistical post processes for the improvement of the results of numerical wave prediction models. A combination of Kolmogorov-Zurbenko and Kalman filters. J. Oper. Oceanogr., 4, 2331, https://doi.org/10.1080/1755876X.2011.11020120.

    • Search Google Scholar
    • Export Citation
  • Galanis, G., E. Papageorgiou, and A. Liakatas, 2017: A hybrid Bayesian Kalman Filter and applications to numerical wind speed modeling. J. Wind Eng. Ind. Aerodyn., 167, 122, https://doi.org/10.1016/j.jweia.2017.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glahn, B., M. Peroutka, J. Wiedenfeld, J. Wagner, G. Zylstra, B. Schuknecht, and B. Jackson, 2009: MOS uncertainty estimates in an ensemble framework. Mon. Wea. Rev., 137, 246268, https://doi.org/10.1175/2008MWR2569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and D. L. Rife, 2007: A practical approach to sequential estimation of systematic error on near-surface mesoscale grids. Wea. Forecasting, 22, 12571273, https://doi.org/10.1175/2007WAF2006102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, N. K., J. Pleim, R. Gilliam, and D. Kang, 2016: A simple lightning assimilation technique for improving retrospective WRF simulations. J. Adv. Model. Earth Syst., 8, 18061824, https://doi.org/10.1002/2016MS000735.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X. M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyner, T. A., C. Friedland, R. Rohli, A. Treviño, C. Massarra, and G. Paulus, 2015: Cross-correlation modeling of European windstorms: A cokriging approach for optimizing surface wind estimates. Spat. Stat., 13, 6275, https://doi.org/10.1016/j.spasta.2015.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME, Ser. D, 82, 3545.

  • Kalman, R. E., and R. S. Bucy, 1961: New results in linear filtering and prediction problems. Trans. ASME, Ser. D, 83, 95108.

  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

    • Crossref
    • Export Citation
  • Lascaux, F., E. Masciadri, and L. Fini, 2015: Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model. Mon. Not. Roy. Astron. Soc., 449, 16641678, https://doi.org/10.1093/mnras/stv332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., J. Shi, and E. Erdem, 2010: Prediction of wind speed time series using modified Taylor Kriging method. Energy, 35, 48704879, https://doi.org/10.1016/j.energy.2010.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lophaven, S. N., H. B. Nielsen, and J. Søndergaard, 2002: DACE: A Matlab Kriging Toolbox, version 2.0. Technical University of Denmark Informatics and Mathematical Modelling Tech. Rep. IMM-TR-2002-12.

  • Lorenzana, J., and Coauthors, 2015: Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain. Geophysical Research Abstracts, Vol. 17, Abstract EGU2015-5441, https://meetingorganizer.copernicus.org/EGU2015/EGU2015-5441.pdf.

  • Louka, P., G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, and G. Kallos, 2008: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn., 96, 23482362, https://doi.org/10.1016/j.jweia.2008.03.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, W., M. C. Taylor, and S. R. Parker, 2008: A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol., 28, 947959, https://doi.org/10.1002/joc.1583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mardia, K. V., C. Goodall, E. J. Redfern, and F. J. Alonso, 1998: The Kriged Kalman filter. Test, 7, 217282, https://doi.org/10.1007/BF02565111.

  • Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438459, https://doi.org/10.1175/2007WAF2006117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollor, D., and R. Stull, 2008: Hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Wea. Forecasting, 23, 131144, https://doi.org/10.1175/2007WAF2006107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2005: The Weather Research and Forecast Model: Software architecture and performance. Proc. 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, Reading, United Kingdom, ECMWF, 156–168.

    • Crossref
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, M. D., 2011: Effects of model resolution and statistical processing on shelter temperature and wind forecasts. J. Appl. Meteor. Climatol., 50, 16271636, https://doi.org/10.1175/2011JAMC2615.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill score based on the mean square error and their relationship to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2017: Meteorological Assimilation Data Ingest System. NOAA, accessed January 2016, https://madis.ncep.noaa.gov/.

  • NOAA/National Centers for Environmental Prediction, 2007: NCEP Global Forecast System (GFS) Analyses and Forecasts. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 15 August 2015, http://rda.ucar.edu/datasets/ds084.6/.

  • Olaofe, Z., 2017: Modeling and sensitivity of the seasonal ocean winds to local effects at west and south coasts of South Africa. Sustainable Energy Technol. Assess., 19, 2441, https://doi.org/10.1016/j.seta.2016.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelland, S., G. Galanis, and G. Kallos, 2011: Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Prog. Photovoltaics, 21, 284296, https://doi.org/10.1002/pip.1180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, https://doi.org/10.1175/JAM2534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, H., C. Hongkun, T. Yubo, Y. Ruixi, W. Ling, and H. Pan, 2014: Wind speed spatio-temporal forecasting of wind farms based on universal kriging and Bayesian dynamic model. 2014 Int. Conf. on Power System Technology (POWERCON), Chengdu, China, IEEE, 2897–2902, https://doi.org/10.1109/POWERCON.2014.6993915.

    • Crossref
    • Export Citation
  • Rincon, A., O. Jorba, and J. M. Baldasano, 2010: Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain. Extended Abstracts, European Conf. on Applied Meteorology, Vol. 7, Zurich, Switzerland, European Meteorological Society, EMS2010-406.

  • Roux, G., Y. Liu, L. D. Monache, R.-S. Sheu, and T. T. Warner, 2009: Verification of high resolution WRF-RTFDDA surface forecasts over mountains and plains. Preprints, 2009 WRF Users’ Workshop, Boulder, CO, NCAR.

  • Ryu, J. S., M. S. Kim, K. J. Cha, T. Lee, and D. H. Choi, 2002: Kriging interpolation methods in geostatistics and DACE model. KSME Int. J., 16, 619632, https://doi.org/10.1007/BF03184811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and D. Moller, 2015: Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. Ann. Appl. Stat., 9, 13281349, https://doi.org/10.1214/15-AOAS843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sliz-Szkliniarz, B., and J. Vogt, 2011: GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko–PomorskieVoivodeship. Renewable Sustainable Energy Rev., 15, 16961707, https://doi.org/10.1016/j.rser.2010.11.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tse, K. T., S. W. Li, and J. C. H. Fung, 2014: A comparative study of typhoon wind profiles derived from field measurements, meso-scale numerical simulations, and wind tunnel physical modeling. J. Wind Eng. Ind. Aerodyn., 131, 4658, https://doi.org/10.1016/j.jweia.2014.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and Coauthors, 2006: Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004. J. Geophys. Res., 111, D23S28, https://doi.org/10.1029/2006JD007598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

  • Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, https://doi.org/10.1175/MWR3402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyszogrodzki, A. A., Y. Liu, N. Jacobs, P. Childs, Y. Zhang, G. Roux, and T. T. Warner, 2013: Analysis of the surface temperature and wind forecast errors of the NCAR AirDat operational CONUS 4-km WRF forecasting system. Meteor. Atmos. Phys., 122, 125143, https://doi.org/10.1007/s00703-013-0281-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., M. Astitha, E. Anagnostou, and B. Hartman, 2017: Using a Bayesian regression approach on dual-model weather simulations to improve wind speed prediction. J. Appl. Meteor. Climatol., 56, 11551174, https://doi.org/10.1175/JAMC-D-16-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamo, M., L. Bel, O. Mestre, and J. Stein, 2016: Improved gridded wind speed forecasts by statistical postprocessing of numerical models with block regression. Wea. Forecasting, 31, 19291945, https://doi.org/10.1175/WAF-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zlatev, Z., S. E. Middleton, and G. Veres, 2010: Benchmarking knowledge-assisted kriging for automated spatial interpolation of wind measurements. 13th Int. Conf. on Information Fusion (FUSION), Edinburgh, United Kingdom, IEEE, 1–8, https://doi.org/10.1109/ICIF.2010.5711918.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2549 823 56
PDF Downloads 1135 163 10